亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The optimal one-sided parametric polynomial approximants of a circular arc are considered. More precisely, the approximant must be entirely in or out of the underlying circle of an arc. The natural restriction to an arc's approximants interpolating boundary points is assumed. However, the study of approximants, which additionally interpolate corresponding tangent directions and curvatures at the boundary of an arc, is also considered. Several low-degree polynomial approximants are studied in detail. When several solutions fulfilling the interpolation conditions exist, the optimal one is characterized, and a numerical algorithm for its construction is suggested. Theoretical results are demonstrated with several numerical examples and a comparison with general (i.e. non-one-sided) approximants are provided.

相關內容

New geometric methods for fast evaluation of derivatives of polynomial and rational B\'{e}zier curves are proposed. They apply an algorithm for evaluating polynomial or rational B\'{e}zier curves, which was recently given by the authors. Numerical tests show that the new approach is more efficient than the methods which use the famous de Casteljau algorithm. The algorithms work well even for high-order derivatives of rational B\'{e}zier curves of high degrees.

Principal component analysis (PCA) is a longstanding and well-studied approach for dimension reduction. It rests upon the assumption that the underlying signal in the data has low rank, and thus can be well-summarized using a small number of dimensions. The output of PCA is typically represented using a scree plot, which displays the proportion of variance explained (PVE) by each principal component. While the PVE is extensively reported in routine data analyses, to the best of our knowledge the notion of inference on the PVE remains unexplored. In this paper, we consider inference on the PVE. We first introduce a new population quantity for the PVE with respect to an unknown matrix mean. Critically, our interest lies in the PVE of the sample principal components (as opposed to unobserved population principal components); thus, the population PVE that we introduce is defined conditional on the sample singular vectors. We show that it is possible to conduct inference, in the sense of confidence intervals, p-values, and point estimates, on this population quantity. Furthermore, we can conduct valid inference on the PVE of a subset of the principal components, even when the subset is selected using a data-driven approach such as the elbow rule. We demonstrate the proposed approach in simulation and in an application to a gene expression dataset.

The Laplace eigenvalue problem on circular sectors has eigenfunctions with corner singularities. Standard methods may produce suboptimal approximation results. To address this issue, a novel numerical algorithm that enhances standard isogeometric analysis is proposed in this paper by using a single-patch graded mesh refinement scheme. Numerical tests demonstrate optimal convergence rates for both the eigenvalues and eigenfunctions. Furthermore, the results show that smooth splines possess a superior approximation constant compared to their $C^0$-continuous counterparts for the lower part of the Laplace spectrum. This is an extension of previous findings about excellent spectral approximation properties of smooth splines on rectangular domains to circular sectors. In addition, graded meshes prove to be particularly advantageous for an accurate approximation of a limited number of eigenvalues. The novel algorithm applied here has a drawback in the singularity of the isogeometric parameterization. It results in some basis functions not belonging to the solution space of the corresponding weak problem, which is considered a variational crime. However, the approach proves to be robust. Finally, a hierarchical mesh structure is presented to avoid anisotropic elements, omit redundant degrees of freedom and keep the number of basis functions contributing to the variational crime constant, independent of the mesh size. Numerical results validate the effectiveness of hierarchical mesh grading for the simulation of eigenfunctions with and without corner singularities.

Interpolation of data on non-Euclidean spaces is an active research area fostered by its numerous applications. This work considers the Hermite interpolation problem: finding a sufficiently smooth manifold curve that interpolates a collection of data points on a Riemannian manifold while matching a prescribed derivative at each point. We propose a novel procedure relying on the general concept of retractions to solve this problem on a large class of manifolds, including those for which computing the Riemannian exponential or logarithmic maps is not straightforward, such as the manifold of fixed-rank matrices. We analyze the well-posedness of the method by introducing and showing the existence of retraction-convex sets, a generalization of geodesically convex sets. We extend to the manifold setting a classical result on the asymptotic interpolation error of Hermite interpolation. We finally illustrate these results and the effectiveness of the method with numerical experiments on the manifold of fixed-rank matrices and the Stiefel manifold of matrices with orthonormal columns.

The ability to extract material parameters of perovskite from quantitative experimental analysis is essential for rational design of photovoltaic and optoelectronic applications. However, the difficulty of this analysis increases significantly with the complexity of the theoretical model and the number of material parameters for perovskite. Here we use Gaussian process to develop an analysis platform that can extract up to 8 fundamental material parameters of an organometallic perovskite semiconductor from a transient photoluminescence experiment, based on a complex full physics model that includes drift-diffusion of carriers and dynamic defect occupation. An example study of thermal degradation reveals that changes in doping concentration and carrier mobility dominate, while the defect energy level remains nearly unchanged. This platform can be conveniently applied to other experiments or to combinations of experiments, accelerating materials discovery and optimization of semiconductor materials for photovoltaics and other applications.

We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.

Digital credentials represent a cornerstone of digital identity on the Internet. To achieve privacy, certain functionalities in credentials should be implemented. One is selective disclosure, which allows users to disclose only the claims or attributes they want. This paper presents a novel approach to selective disclosure that combines Merkle hash trees and Boneh-Lynn-Shacham (BLS) signatures. Combining these approaches, we achieve selective disclosure of claims in a single credential and creation of a verifiable presentation containing selectively disclosed claims from multiple credentials signed by different parties. Besides selective disclosure, we enable issuing credentials signed by multiple issuers using this approach.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Which polyominoes can be folded into a cube, using only creases along edges of the square lattice underlying the polyomino, with fold angles of $\pm 90^\circ$ and $\pm 180^\circ$, and allowing faces of the cube to be covered multiple times? Prior results studied tree-shaped polyominoes and polyominoes with holes and gave partial classifications for these cases. We show that there is an algorithm deciding whether a given polyomino can be folded into a cube. This algorithm essentially amounts to trying all possible ways of mapping faces of the polyomino to faces of the cube, but (perhaps surprisingly) checking whether such a mapping corresponds to a valid folding is equivalent to the unlink recognition problem from topology. We also give further results on classes of polyominoes which can or cannot be folded into cubes. Our results include (1) a full characterisation of all tree-shaped polyominoes that can be folded into the cube (2) that any rectangular polyomino which contains only one simple hole (out of five different types) does not fold into a cube, (3) a complete characterisation when a rectangular polyomino with two or more unit square holes (but no other holes) can be folded into a cube, and (4) a sufficient condition when a simply-connected polyomino can be folded to a cube. These results answer several open problems of previous work and close the cases of tree-shaped polyominoes and rectangular polyominoes with just one simple hole.

Three types of the Parikh mapping are introduced, namely, alphabetic, alphabetic-basis and basis. Explicit expressions for attractors of the k-th order in bases n >= 8, including countable ones, are found. Properties for the alphabetic, alphabetic-basis and basis Parikh vectors are given at each step of the Parikh mapping. The maximum number of iterations leading to attractors of the k-th order in the basis n is determined.

北京阿比特科技有限公司