亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of computing an equilibrium in a class of \textit{nonlinear generalized Nash equilibrium problems (NGNEPs)} in which the strategy sets for each player are defined by equality and inequality constraints that may depend on the choices of rival players. While the asymptotic global convergence and local convergence rates of algorithms to solve this problem have been extensively investigated, the analysis of nonasymptotic iteration complexity is still in its infancy. This paper presents two first-order algorithms -- based on the quadratic penalty method (QPM) and augmented Lagrangian method (ALM), respectively -- with an accelerated mirror-prox algorithm as the solver in each inner loop. We establish a global convergence guarantee for solving monotone and strongly monotone NGNEPs and provide nonasymptotic complexity bounds expressed in terms of the number of gradient evaluations. Experimental results demonstrate the efficiency of our algorithms in practice.

相關內容

In this work, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the inner loop and the unforced outer loop are each almost globally asymptotically stable. Our qualitative approach relies on the absence of chain recurrence for non-equilibrium points of the unforced outer loop, the hyperbolicity of equilibria, and the precompactness of forward trajectories. We show that the required structure of the chain recurrent set can be readily verified, and describe two important classes of systems with this property. We also show that the precompactness requirement can be verified by growth rate conditions on the interconnection term coupling the subsystems. Our results stand in contrast to prior works that require either global asymptotic stability of the subsystems (impossible for smooth systems evolving on general manifolds), time scale separation between the subsystems, or strong disturbance robustness properties of the outer loop. The approach has clear applications in stability certification of cascaded controllers for systems evolving on manifolds.

The study of market equilibria is central to economic theory, particularly in efficiently allocating scarce resources. However, the computation of equilibrium prices at which the supply of goods matches their demand typically relies on having access to complete information on private attributes of agents, e.g., suppliers' cost functions, which are often unavailable in practice. Motivated by this practical consideration, we consider the problem of setting equilibrium prices in the incomplete information setting wherein a market operator seeks to satisfy the customer demand for a commodity by purchasing the required amount from competing suppliers with privately known cost functions unknown to the market operator. In this incomplete information setting, we consider the online learning problem of learning equilibrium prices over time while jointly optimizing three performance metrics -- unmet demand, cost regret, and payment regret -- pertinent in the context of equilibrium pricing over a horizon of $T$ periods. We first consider the setting when suppliers' cost functions are fixed and develop algorithms that achieve a regret of $O(\log \log T)$ when the customer demand is constant over time, or $O(\sqrt{T} \log \log T)$ when the demand is variable over time. Next, we consider the setting when the suppliers' cost functions can vary over time and illustrate that no online algorithm can achieve sublinear regret on all three metrics when the market operator has no information about how the cost functions change over time. Thus, we consider an augmented setting wherein the operator has access to hints/contexts that, without revealing the complete specification of the cost functions, reflect the variation in the cost functions over time and propose an algorithm with sublinear regret in this augmented setting.

We consider search by mobile agents for a hidden, idle target, placed on the infinite line. Feasible solutions are agent trajectories in which all agents reach the target sooner or later. A special feature of our problem is that the agents are $p$-faulty, meaning that every attempt to change direction is an independent Bernoulli trial with known probability $p$, where $p$ is the probability that a turn fails. We are looking for agent trajectories that minimize the worst-case expected termination time, relative to competitive analysis. First, we study linear search with one deterministic $p$-faulty agent, i.e., with no access to random oracles, $p\in (0,1/2)$. For this problem, we provide trajectories that leverage the probabilistic faults into an algorithmic advantage. Our strongest result pertains to a search algorithm (deterministic, aside from the adversarial probabilistic faults) which, as $p\to 0$, has optimal performance $4.59112+\epsilon$, up to the additive term $\epsilon$ that can be arbitrarily small. Additionally, it has performance less than $9$ for $p\leq 0.390388$. When $p\to 1/2$, our algorithm has performance $\Theta(1/(1-2p))$, which we also show is optimal up to a constant factor. Second, we consider linear search with two $p$-faulty agents, $p\in (0,1/2)$, for which we provide three algorithms of different advantages, all with a bounded competitive ratio even as $p\rightarrow 1/2$. Indeed, for this problem, we show how the agents can simulate the trajectory of any $0$-faulty agent (deterministic or randomized), independently of the underlying communication model. As a result, searching with two agents allows for a solution with a competitive ratio of $9+\epsilon$, or a competitive ratio of $4.59112+\epsilon$. Our final contribution is a novel algorithm for searching with two $p$-faulty agents that achieves a competitive ratio $3+4\sqrt{p(1-p)}$.

A novel barycentric interpolation algorithm with a specific exponential convergence rate is designed for analytic functions defined on the complex plane, with singularities located near the interpolation region, where the region is compact and can be disconnected or multiconnected. The core of the method is the efficient computation of the interpolation nodes and poles using discrete distributions that approximate the equilibrium logarithmic potential, achieved by solving a Symm's integral equation. It takes different strategies to distribute the poles for isolated singularities and branch points, respectively. In particular, if poles are not considered, it derives a polynomial interpolation with exponential convergence. Numerical experiments illustrate the superior performance of the proposed method.

Platforms for online civic participation rely heavily on methods for condensing thousands of comments into a relevant handful, based on whether participants agree or disagree with them. These methods should guarantee fair representation of the participants, as their outcomes may affect the health of the conversation and inform impactful downstream decisions. To that end, we draw on the literature on approval-based committee elections. Our setting is novel in that the approval votes are incomplete since participants will typically not vote on all comments. We prove that this complication renders non-adaptive algorithms impractical in terms of the amount of information they must gather. Therefore, we develop an adaptive algorithm that uses information more efficiently by presenting incoming participants with statements that appear promising based on votes by previous participants. We prove that this method satisfies commonly used notions of fair representation, even when participants only vote on a small fraction of comments. Finally, an empirical evaluation using real data shows that the proposed algorithm provides representative outcomes in practice.

Quadratization of polynomial and nonpolynomial systems of ordinary differential equations is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reaction modeling and mathematical analysis. A quadratization reveals new variables and structures of a model, which may be easier to analyze, simulate, control, and provides a convenient parametrization for learning. This paper presents novel theory, algorithms and software capabilities for quadratization of non-autonomous ODEs. We provide existence results, depending on the regularity of the input function, for cases when a quadratic-bilinear system can be obtained through quadratization. We further develop existence results and an algorithm that generalizes the process of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is semi-discretized PDEs, where the nonlinear terms remain symbolically identical when the discretization size increases. As an important aspect for practical adoption of this research, we extended the capabilities of the QBee software towards both non-autonomous systems of ODEs and ODEs with arbitrary dimension. We present several examples of ODEs that were previously reported in the literature, and where our new algorithms find quadratized ODE systems with lower dimension than the previously reported lifting transformations. We further highlight an important area of quadratization: reduced-order model learning. This area can benefit significantly from working in the optimal lifting variables, where quadratic models provide a direct parametrization of the model that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights these advantages.

Recently, neural networks have been widely applied for solving partial differential equations (PDEs). Although such methods have been proven remarkably successful on practical engineering problems, they have not been shown, theoretically or empirically, to converge to the underlying PDE solution with arbitrarily high accuracy. The primary difficulty lies in solving the highly non-convex optimization problems resulting from the neural network discretization, which are difficult to treat both theoretically and practically. It is our goal in this work to take a step toward remedying this. For this purpose, we develop a novel greedy training algorithm for shallow neural networks. Our method is applicable to both the variational formulation of the PDE and also to the residual minimization formulation pioneered by physics informed neural networks (PINNs). We analyze the method and obtain a priori error bounds when solving PDEs from the function class defined by shallow networks, which rigorously establishes the convergence of the method as the network size increases. Finally, we test the algorithm on several benchmark examples, including high dimensional PDEs, to confirm the theoretical convergence rate. Although the method is expensive relative to traditional approaches such as finite element methods, we view this work as a proof of concept for neural network-based methods, which shows that numerical methods based upon neural networks can be shown to rigorously converge.

We present a generalized distance metric that can be used to identify routing table entries and implement routing strategies to reach the root node for a given key, in DHT (Distributed Hash Table) networks such as Chord, Kademlia, Tapestry, and Pastry. The generalization shows that all the four DHT algorithms are in fact, the same algorithm but with different parameters in distance representation. This paper also proposes that nodes can have routing tables of varying sizes based on their memory capabilities. But Each node must have at least two entries, one for the node closest from it, and the other for the node from whom it is closest, regardless of memory capacity. With this condition, messages will still reach the correct root nodes. We also further observe that in any network, if the distance metric of the DHT is same at all the nodes, then the root node for a key will also be the same, irrespective of the size of the routing table at different nodes.

Electoral control types are ways of trying to change the outcome of elections by altering aspects of their composition and structure [BTT92]. We say two compatible (i.e., having the same input types) control types that are about the same election system E form a collapsing pair if for every possible input (which typically consists of a candidate set, a vote set, a focus candidate, and sometimes other parameters related to the nature of the attempted alteration), either both or neither of the attempted attacks can be successfully carried out [HHM20]. For each of the seven general (i.e., holding for all election systems) electoral control type collapsing pairs found by Hemaspaandra, Hemaspaandra, and Menton [HHM20] and for each of the additional electoral control type collapsing pairs of Carleton et al. [CCH+ 22] for veto and approval (and many other election systems in light of that paper's Theorems 3.6 and 3.9), both members of the collapsing pair have the same complexity since as sets they are the same set. However, having the same complexity (as sets) is not enough to guarantee that as search problems they have the same complexity. In this paper, we explore the relationships between the search versions of collapsing pairs. For each of the collapsing pairs of Hemaspaandra, Hemaspaandra, and Menton [HHM20] and Carleton et al. [CCH+ 22], we prove that the pair's members' search-version complexities are polynomially related (given access, for cases when the winner problem itself is not in polynomial time, to an oracle for the winner problem). Beyond that, we give efficient reductions that from a solution to one compute a solution to the other. For the concrete systems plurality, veto, and approval, we completely determine which of their (due to our results) polynomially-related collapsing search-problem pairs are polynomial-time computable and which are NP-hard.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

北京阿比特科技有限公司