亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Through ordinary transmissions over wireless multicast networks are greatly hampered due to the simultaneous presence of fading and shadowing of wireless channels, secure transmissions can be enhanced by properly exploiting random attributes of the propagation medium. This study focuses on the utilization of those attributes to enhance the physical layer security (PLS) performance of a dual-hop wireless multicast network over kappa-mu shadow-fading channel under the wiretapping attempts of multiple eavesdroppers. In order to improve the secrecy level, the best relay selection strategy among multiple relays is employed. Performance analysis is carried out based on the mathematical modeling in terms of analytical expressions of non-zero secrecy capacity probability, secure outage probability, and ergodic secrecy capacity over multicast relay networks. Capitalizing on those expressions, the effects of system parameters, i.e., fading, shadowing, the number of antennas, destination receivers, eavesdroppers, and relays, on the secrecy performance are investigated. Numerical results show that the detrimental impacts caused by fading and shadowing can be remarkably mitigated using the well-known opportunistic relaying technique. Moreover, the proposed model unifies secrecy analysis of several classical models, thereby exhibiting enormous versatility than the existing works.

相關內容

We consider a coded compressed sensing approach for the unsourced random access and replace the outer tree code proposed by Amalladinne et al. with the list recoverable code capable of correcting t errors. A finite-length random coding bound for such codes is derived. The numerical experiments in the single antenna quasi-static Rayleigh fading MAC show that transition to list recoverable codes correcting t errors improves the performance of coded compressed sensing scheme by 7-10 dB compared to the tree code-based scheme. We propose two practical constructions of outer codes. The first is a modification of the tree code. It utilizes the same code structure, and a key difference is a decoder capable of correcting up to t errors. The second is based on the Reed-Solomon codes and Guruswami-Sudan list decoding algorithm. The first scheme provides an energy efficiency very close to the random coding bound when the decoding complexity is unbounded. But for the practical parameters, the second scheme is better and improves the performance of a tree code-based scheme when the number of active users is less than 200.

The extreme or maximum age of information (AoI) is analytically studied for wireless communication systems. In particular, a wireless powered single-antenna source node and a receiver (connected to the power grid) equipped with multiple antennas are considered when operated under independent Rayleigh-faded channels. Via the extreme value theory and its corresponding statistical features, we demonstrate that the extreme AoI converges to the Gumbel distribution whereas its corresponding parameters are obtained in straightforward closed-form expressions. Capitalizing on this result, the risk of the extreme AoI realization is analytically evaluated according to some relevant performance metrics, while some useful engineering insights are manifested.

We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector. The method maximizes an achievable information rate, while simultaneously satisfying constraints on the adjacent channel leakage ratio (ACLR) and peak-to-average power ratio (PAPR). This allows control of the tradeoff between spectral containment, peak power, and communication rate. Evaluation on an additive white Gaussian noise (AWGN) channel shows significant reduction of ACLR and PAPR compared to a conventional baseline relying on quadrature amplitude modulation (QAM) and root-raised-cosine (RRC), without significant loss of information rate. When considering a 3rd Generation Partnership Project (3GPP) multipath channel, the learned waveform and neural receiver enable competitive or higher rates than an orthogonal frequency division multiplexing (OFDM) baseline, while reducing the ACLR by 10 dB and the PAPR by 2 dB. The proposed method incurs no additional complexity on the transmitter side and might be an attractive tool for waveform design of beyond-5G systems.

This paper proposes a novel mission planning platform, capable of efficiently deploying a team of UAVs to cover complex-shaped areas, in various remote sensing applications. Under the hood lies a novel optimization scheme for grid-based methods, utilizing Simulated Annealing algorithm, that significantly increases the achieved percentage of coverage and improves the qualitative features of the generated paths. Extensive simulated evaluation in comparison with a state-of-the-art alternative methodology, for coverage path planning (CPP) operations, establishes the performance gains in terms of achieved coverage and overall duration of the generated missions. On top of that, DARP algorithm is employed to allocate sub-tasks to each member of the swarm, taking into account each UAV's sensing and operational capabilities, their initial positions and any no-fly-zones possibly defined inside the operational area. This feature is of paramount importance in real-life applications, as it has the potential to achieve tremendous performance improvements in terms of time demanded to complete a mission, while at the same time it unlocks a wide new range of applications, that was previously not feasible due to the limited battery life of UAVs. In order to investigate the actual efficiency gains that are introduced by the multi-UAV utilization, a simulated study is performed as well. All of these capabilities are packed inside an end-to-end platform that eases the utilization of UAVs' swarms in remote sensing applications. Its versatility is demonstrated via two different real-life applications: (i) a photogrametry for precision agriculture and (ii) an indicative search and rescue for first responders missions, that were performed utilizing a swarm of commercial UAVs.

THz communication is regarded as one of the potential key enablers for next-generation wireless systems. While THz frequency bands provide abundant bandwidths and extremely high data rates, the operation at THz bands is mandated by short communication ranges and narrow pencil beams, which are highly susceptible to user mobility and beam misalignment as well as channel blockages. This raises the need for novel beam tracking methods that take into account the tradeoff between enhancing the received signal strength by increasing beam directivity, and increasing the coverage probability by widening the beam. To address these challenges, a multi-objective optimization problem is formulated with the goal of jointly maximizing the ergodic rate and minimizing the outage probability subject to transmit power and average overhead constraints. Then, a novel parameterized beamformer with dynamic beamwidth adaptation is proposed. In addition to the precoder, an event-based beam tracking approach is introduced that enables reacting to outages caused by beam misalignment and dynamic blockage while maintaining a low pilot overhead. Simulation results show that our proposed beamforming scheme improves average rate performance and reduces the amount of communication outages caused by beam misalignment. Moreover, the proposed event-triggered channel estimation approach enables low-overhead yet reliable communication.

Terahertz (THz) communications have naturally promising physical layer security (PLS) performance in the angular domain due to the high directivity feature. However, if eavesdroppers reside in the beam sector, the directivity fails to work effectively to handle this range-domain security problem. More critically, with an eavesdropper inside the beam sector and nearer to the transmitter than the legitimate receiver, i.e., in close proximity, secure communication is jeopardized. This open challenge motivates this work to study PLS techniques to enhance THz range-angle security. In this paper, a novel widely-spaced array and beamforming (WASABI) design for THz range-angle secure communication is proposed, based on the uniform planar array and hybrid beamforming. Specifically, the WASABI design is theoretically proved to achieve the optimal secrecy rate powered by the non-constrained optimum approaching (NCOA) algorithm with more than one RF chain, i.e., with the hybrid beamforming scheme. Moreover, with a low-complexity and sub-optimal analog beamforming, the WASABI scheme can achieve sub-optimal performance with less than 5% secrecy rate degradation. Simulation results illustrate that our proposed widely-spaced antenna communication scheme can ensure a 6bps/Hz secrecy rate when the transmit power is 10dBm. Finally, a frequency diverse array, as an advocated range security candidate in the literature, is proven to be ineffective to enhance range security.

One of the most critical aspects of enabling next-generation wireless technologies is developing an accurate and consistent channel model to be validated effectively with the help of real-world measurements. From this point of view, remarkable research has recently been conducted to model propagation channels involving the modification of the wireless propagation environment through the inclusion of reconfigurable intelligent surfaces (RISs). This study mainly aims to present a vision on channel modeling strategies for the RIS-empowered communications systems considering the state-of-the-art channel and propagation modeling efforts in the literature. Moreover, it is also desired to draw attention to open-source and standard-compliant physical channel modeling efforts to provide comprehensive insights regarding the practical use-cases of RISs in future wireless networks.

RFID as an important component technology of IoT faces important security risks while being rapidly applied, among which the discovery of unauthorized readers in space is crucial. There are some researches proposed the unauthorized reader detection algorithm based on commercial off the shell(COTS) devices, but these detection algorithms are often easily affected by moving objects blocking interference in space, causing false alarms. We propose a new method of eliminating moving object interference, which can reduce the system false alarm rate to less than 7.9% by experimental testing

Lattice-Boltzmann methods are known for their simplicity, efficiency and ease of parallelization, usually relying on uniform Cartesian meshes with a strong bond between spatial and temporal discretization. This fact complicates the crucial issue of reducing the computational cost and the memory impact by automatically coarsening the grid where a fine mesh is unnecessary, still ensuring the overall quality of the numerical solution through error control. This work provides a possible answer to this interesting question, by connecting, for the first time, the field of lattice-Boltzmann Methods (LBM) to the adaptive multiresolution (MR) approach based on wavelets. To this end, we employ a MR multi-scale transform to adapt the mesh as the solution evolves in time according to its local regularity. The collision phase is not affected due to its inherent local nature and because we do not modify the speed of the sound, contrarily to most of the LBM/Adaptive Mesh Refinement (AMR) strategies proposed in the literature, thus preserving the original structure of any LBM scheme. Besides, an original use of the MR allows the scheme to resolve the proper physics by efficiently controlling the accuracy of the transport phase. We carefully test our method to conclude on its adaptability to a wide family of existing lattice Boltzmann schemes, treating both hyperbolic and parabolic systems of equations, thus being less problem-dependent than the AMR approaches, which have a hard time guaranteeing an effective control on the error. The ability of the method to yield a very efficient compression rate and thus a computational cost reduction for solutions involving localized structures with loss of regularity is also shown, while guaranteeing a precise control on the approximation error introduced by the spatial adaptation of the grid. The numerical strategy is implemented on a specific open-source platform called SAMURAI with a dedicated data-structure relying on set algebra.

When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.

北京阿比特科技有限公司