In multimodal-aware recommendation, the extraction of meaningful multimodal features is at the basis of high-quality recommendations. Generally, each recommendation framework implements its multimodal extraction procedures with specific strategies and tools. This is limiting for two reasons: (i) different extraction strategies do not ease the interdependence among multimodal recommendation frameworks; thus, they cannot be efficiently and fairly compared; (ii) given the large plethora of pre-trained deep learning models made available by different open source tools, model designers do not have access to shared interfaces to extract features. Motivated by the outlined aspects, we propose Ducho, a unified framework for the extraction of multimodal features in recommendation. By integrating three widely-adopted deep learning libraries as backends, namely, TensorFlow, PyTorch, and Transformers, we provide a shared interface to extract and process features where each backend's specific methods are abstracted to the end user. Noteworthy, the extraction pipeline is easily configurable with a YAML-based file where the user can specify, for each modality, the list of models (and their specific backends/parameters) to perform the extraction. Finally, to make Ducho accessible to the community, we build a public Docker image equipped with a ready-to-use CUDA environment and propose three demos to test its functionalities for different scenarios and tasks. The GitHub repository and the documentation is accessible at this link: //github.com/sisinflab/Ducho.
LLMs usually exhibit limitations in their ability to incorporate new knowledge, the generation of hallucinations, and the transparency of their decision-making process. In this paper, we explore how to prompt LLMs with knowledge graphs (KG), working as a remedy to engage LLMs with up-to-date knowledge and elicit the reasoning pathways from LLMs. Specifically, we build a prompting pipeline that endows LLMs with the capability of comprehending KG inputs and inferring with a combined implicit knowledge and the retrieved external knowledge. In addition, we investigate eliciting the mind map on which LLMs perform the reasoning and generate the answers. It is identified that the produced mind map exhibits the reasoning pathways of LLMs grounded on the ontology of knowledge, hence bringing the prospects of probing and gauging LLM inference in production. The experiments on three question & answering datasets also show that MindMap prompting leads to a striking empirical gain. For instance, prompting a GPT-3.5 with MindMap yields an overwhelming performance over GPT-4 consistently. We also demonstrate that with structured facts retrieved from KG, MindMap can outperform a series of prompting-with-document-retrieval methods, benefiting from more accurate, concise, and comprehensive knowledge from KGs.
Psychological trait estimation from external factors such as movement and appearance is a challenging and long-standing problem in psychology, and is principally based on the psychological theory of embodiment. To date, attempts to tackle this problem have utilized private small-scale datasets with intrusive body-attached sensors. Potential applications of an automated system for psychological trait estimation include estimation of occupational fatigue and psychology, and marketing and advertisement. In this work, we propose PsyMo (Psychological traits from Motion), a novel, multi-purpose and multi-modal dataset for exploring psychological cues manifested in walking patterns. We gathered walking sequences from 312 subjects in 7 different walking variations and 6 camera angles. In conjunction with walking sequences, participants filled in 6 psychological questionnaires, totalling 17 psychometric attributes related to personality, self-esteem, fatigue, aggressiveness and mental health. We propose two evaluation protocols for psychological trait estimation. Alongside the estimation of self-reported psychological traits from gait, the dataset can be used as a drop-in replacement to benchmark methods for gait recognition. We anonymize all cues related to the identity of the subjects and publicly release only silhouettes, 2D / 3D human skeletons and 3D SMPL human meshes.
Integration against, and hence sampling from, high-dimensional probability distributions is of essential importance in many application areas and has been an active research area for decades. One approach that has drawn increasing attention in recent years has been the generation of samples from a target distribution $\mathbb{P}_{\mathrm{tar}}$ using transport maps: if $\mathbb{P}_{\mathrm{tar}} = T_\# \mathbb{P}_{\mathrm{ref}}$ is the pushforward of an easily-sampled probability distribution $\mathbb{P}_{\mathrm{ref}}$ under the transport map $T$, then the application of $T$ to $\mathbb{P}_{\mathrm{ref}}$-distributed samples yields $\mathbb{P}_{\mathrm{tar}}$-distributed samples. This paper proposes the application of transport maps not just to random samples, but also to quasi-Monte Carlo points, higher-order nets, and sparse grids in order for the transformed samples to inherit the original convergence rates that are often better than $N^{-1/2}$, $N$ being the number of samples/quadrature nodes. Our main result is the derivation of an explicit transport map for the case that $\mathbb{P}_{\mathrm{tar}}$ is a mixture of simple distributions, e.g.\ a Gaussian mixture, in which case application of the transport map $T$ requires the solution of an \emph{explicit} ODE with \emph{closed-form} right-hand side. Mixture distributions are of particular applicability and interest since many methods proceed by first approximating $\mathbb{P}_{\mathrm{tar}}$ by a mixture and then sampling from that mixture (often using importance reweighting). Hence, this paper allows for the sampling step to provide a better convergence rate than $N^{-1/2}$ for all such methods.
Recent methods for neural surface representation and rendering, for example NeuS, have demonstrated the remarkably high-quality reconstruction of static scenes. However, the training of NeuS takes an extremely long time (8 hours), which makes it almost impossible to apply them to dynamic scenes with thousands of frames. We propose a fast neural surface reconstruction approach, called NeuS2, which achieves two orders of magnitude improvement in terms of acceleration without compromising reconstruction quality. To accelerate the training process, we parameterize a neural surface representation by multi-resolution hash encodings and present a novel lightweight calculation of second-order derivatives tailored to our networks to leverage CUDA parallelism, achieving a factor two speed up. To further stabilize and expedite training, a progressive learning strategy is proposed to optimize multi-resolution hash encodings from coarse to fine. We extend our method for fast training of dynamic scenes, with a proposed incremental training strategy and a novel global transformation prediction component, which allow our method to handle challenging long sequences with large movements and deformations. Our experiments on various datasets demonstrate that NeuS2 significantly outperforms the state-of-the-arts in both surface reconstruction accuracy and training speed for both static and dynamic scenes. The code is available at our website: //vcai.mpi-inf.mpg.de/projects/NeuS2/ .
Obfuscating a dataset by adding random noises to protect the privacy of sensitive samples in the training dataset is crucial to prevent data leakage to untrusted parties for edge applications. We conduct comprehensive experiments to investigate how the dataset obfuscation can affect the resultant model weights - in terms of the model accuracy, Frobenius-norm (F-norm)-based model distance, and level of data privacy - and discuss the potential applications with the proposed Privacy, Utility, and Distinguishability (PUD)-triangle diagram to visualize the requirement preferences. Our experiments are based on the popular MNIST and CIFAR-10 datasets under both independent and identically distributed (IID) and non-IID settings. Significant results include a trade-off between the model accuracy and privacy level and a trade-off between the model difference and privacy level. The results indicate broad application prospects for training outsourcing in edge computing and guarding against attacks in Federated Learning among edge devices.
Information extraction and textual comprehension from materials literature are vital for developing an exhaustive knowledge base that enables accelerated materials discovery. Language models have demonstrated their capability to answer domain-specific questions and retrieve information from knowledge bases. However, there are no benchmark datasets in the materials domain that can evaluate the understanding of the key concepts by these language models. In this work, we curate a dataset of 650 challenging questions from the materials domain that require the knowledge and skills of a materials student who has cleared their undergraduate degree. We classify these questions based on their structure and the materials science domain-based subcategories. Further, we evaluate the performance of GPT-3.5 and GPT-4 models on solving these questions via zero-shot and chain of thought prompting. It is observed that GPT-4 gives the best performance (~62% accuracy) as compared to GPT-3.5. Interestingly, in contrast to the general observation, no significant improvement in accuracy is observed with the chain of thought prompting. To evaluate the limitations, we performed an error analysis, which revealed conceptual errors (~64%) as the major contributor compared to computational errors (~36%) towards the reduced performance of LLMs. We hope that the dataset and analysis performed in this work will promote further research in developing better materials science domain-specific LLMs and strategies for information extraction.
Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.