亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the numerical solution of the two-dimensional fractional Laplacian wave equations. After splitting out the Riesz fractional derivatives from the fractional Laplacian, we treat the Riesz fractional derivatives with an implicit scheme while solving the rest part explicitly. Thanks to the tensor structure of the Riesz fractional derivatives, a splitting alternative direction implicit (S-ADI) scheme is proposed by incorporating an ADI remainder. Then the Gohberg-Semencul formula, combined with fast Fourier transform, is proposed to solve the derived Toeplitz linear systems at each time integration. Theoretically, we demonstrate that the S-ADI scheme is unconditionally stable and possesses second-order accuracy. Finally, numerical experiments are performed to demonstrate the accuracy and efficiency of the S-ADI scheme.

相關內容

機器學習系統設計系統評估標準

Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this paper, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.

An adaptive method for parabolic partial differential equations that combines sparse wavelet expansions in time with adaptive low-rank approximations in the spatial variables is constructed and analyzed. The method is shown to converge and satisfy similar complexity bounds as existing adaptive low-rank methods for elliptic problems, establishing its suitability for parabolic problems on high-dimensional spatial domains. The construction also yields computable rigorous a posteriori error bounds for such problems. The results are illustrated by numerical experiments.

This paper is concerned with the approximation of solutions to a class of second order non linear abstract differential equations. The finite-dimensional approximate solutions of the given system are built with the aid of the projection operator. We investigate the connection between the approximate solution and exact solution, and the question of convergence. Moreover, we define the Faedo-Galerkin(F-G) approximations and prove the existence and convergence results. The results are obtained by using the theory of cosine functions, Banach fixed point theorem and fractional power of closed linear operators. At last, an example of abstract formulation is provided.

In this paper, we introduce a general constructive method to compute solutions of initial value problems of semilinear parabolic partial differential equations via semigroup theory and computer-assisted proofs. Once a numerical candidate for the solution is obtained via a finite dimensional projection, Chebyshev series expansions are used to solve the linearized equations about the approximation from which a solution map operator is constructed. Using the solution operator (which exists from semigroup theory), we define an infinite dimensional contraction operator whose unique fixed point together with its rigorous bounds provide the local inclusion of the solution. Applying this technique for multiple time steps leads to constructive proofs of existence of solutions over long time intervals. As applications, we study the 3D/2D Swift-Hohenberg, where we combine our method with explicit constructions of trapping regions to prove global existence of solutions of initial value problems converging asymptotically to nontrivial equilibria. A second application consists of the 2D Ohta-Kawasaki equation, providing a framework for handling derivatives in nonlinear terms.

We propose a new numerical domain decomposition method for solving elliptic equations on compact Riemannian manifolds. One advantage of this method is its ability to bypass the need for global triangulations or grids on the manifolds. Additionally, it features a highly parallel iterative scheme. To verify its efficacy, we conduct numerical experiments on some $4$-dimensional manifolds without and with boundary.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

In this paper we develop a classical algorithm of complexity $O(K \, 2^n)$ to simulate parametrized quantum circuits (PQCs) of $n$ qubits, where $K$ is the total number of one-qubit and two-qubit control gates. The algorithm is developed by finding $2$-sparse unitary matrices of order $2^n$ explicitly corresponding to any single-qubit and two-qubit control gates in an $n$-qubit system. Finally, we determine analytical expression of Hamiltonians for any such gate and consequently a local Hamiltonian decomposition of any PQC is obtained. All results are validated with numerical simulations.

Using validated numerical methods, interval arithmetic and Taylor models, we propose a certified predictor-corrector loop for tracking zeros of polynomial systems with a parameter. We provide a Rust implementation which shows tremendous improvement over existing software for certified path tracking.

In this paper, we provide an analysis of a recently proposed multicontinuum homogenization technique. The analysis differs from those used in classical homogenization methods for several reasons. First, the cell problems in multicontinuum homogenization use constraint problems and can not be directly substituted into the differential operator. Secondly, the problem contains high contrast that remains in the homogenized problem. The homogenized problem averages the microstructure while containing the small parameter. In this analysis, we first based on our previous techniques, CEM-GMsFEM, to define a CEM-downscaling operator that maps the multicontinuum quantities to an approximated microscopic solution. Following the regularity assumption of the multicontinuum quantities, we construct a downscaling operator and the homogenized multicontinuum equations using the information of linear approximation of the multicontinuum quantities. The error analysis is given by the residual estimate of the homogenized equations and the well-posedness assumption of the homogenized equations.

This paper discusses the error and cost aspects of ill-posed integral equations when given discrete noisy point evaluations on a fine grid. Standard solution methods usually employ discretization schemes that are directly induced by the measurement points. Thus, they may scale unfavorably with the number of evaluation points, which can result in computational inefficiency. To address this issue, we propose an algorithm that achieves the same level of accuracy while significantly reducing computational costs. Our approach involves an initial averaging procedure to sparsify the underlying grid. To keep the exposition simple, we focus only on one-dimensional ill-posed integral equations that have sufficient smoothness. However, the approach can be generalized to more complicated two- and three-dimensional problems with appropriate modifications.

北京阿比特科技有限公司