亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optical flow has achieved great success under clean scenes, but suffers from restricted performance under foggy scenes. To bridge the clean-to-foggy domain gap, the existing methods typically adopt the domain adaptation to transfer the motion knowledge from clean to synthetic foggy domain. However, these methods unexpectedly neglect the synthetic-to-real domain gap, and thus are erroneous when applied to real-world scenes. To handle the practical optical flow under real foggy scenes, in this work, we propose a novel unsupervised cumulative domain adaptation optical flow (UCDA-Flow) framework: depth-association motion adaptation and correlation-alignment motion adaptation. Specifically, we discover that depth is a key ingredient to influence the optical flow: the deeper depth, the inferior optical flow, which motivates us to design a depth-association motion adaptation module to bridge the clean-to-foggy domain gap. Moreover, we figure out that the cost volume correlation shares similar distribution of the synthetic and real foggy images, which enlightens us to devise a correlation-alignment motion adaptation module to distill motion knowledge of the synthetic foggy domain to the real foggy domain. Note that synthetic fog is designed as the intermediate domain. Under this unified framework, the proposed cumulative adaptation progressively transfers knowledge from clean scenes to real foggy scenes. Extensive experiments have been performed to verify the superiority of the proposed method.

相關內容

通(tong)過(guo)學習、實踐或探(tan)索(suo)所獲(huo)得的認(ren)識(shi)、判斷或技能。

Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of five years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at //www.seanoe.org/data/00810/92226/.

We introduce a new problem in unsupervised domain adaptation, termed as Generalized Universal Domain Adaptation (GUDA), which aims to achieve precise prediction of all target labels including unknown categories. GUDA bridges the gap between label distribution shift-based and label space mismatch-based variants, essentially categorizing them as a unified problem, guiding to a comprehensive framework for thoroughly solving all the variants. The key challenge of GUDA is developing and identifying novel target categories while estimating the target label distribution. To address this problem, we take advantage of the powerful exploration capability of generative flow networks and propose an active domain adaptation algorithm named GFlowDA, which selects diverse samples with probabilities proportional to a reward function. To enhance the exploration capability and effectively perceive the target label distribution, we tailor the states and rewards, and introduce an efficient solution for parent exploration and state transition. We also propose a training paradigm for GUDA called Generalized Universal Adversarial Network (GUAN), which involves collaborative optimization between GUAN and GFlowNet. Theoretical analysis highlights the importance of exploration, and extensive experiments on benchmark datasets demonstrate the superiority of GFlowDA.

Selective inference is the problem of giving valid answers to statistical questions chosen in a data-driven manner. A standard solution to selective inference is simultaneous inference, which delivers valid answers to the set of all questions that could possibly have been asked. However, simultaneous inference can be unnecessarily conservative if this set includes many questions that were unlikely to be asked in the first place. We introduce a less conservative solution to selective inference that we call locally simultaneous inference, which only answers those questions that could plausibly have been asked in light of the observed data, all the while preserving rigorous type I error guarantees. For example, if the objective is to construct a confidence interval for the "winning" treatment effect in a clinical trial with multiple treatments, and it is obvious in hindsight that only one treatment had a chance to win, then our approach will return an interval that is nearly the same as the uncorrected, standard interval. Under mild conditions satisfied by common confidence intervals, locally simultaneous inference strictly dominates simultaneous inference, meaning it can never yield less statistical power but only more. Compared to conditional selective inference, which demands stronger guarantees, locally simultaneous inference is more easily applicable in nonparametric settings and is more numerically stable.

We present a first-order linear-time temporal logic for reasoning about the evolution of directed graphs. Its semantics is based on the counterpart paradigm, thus allowing our logic to represent the creation, duplication, merging, and deletion of elements of a graph as well as how its topology changes over time. We then introduce a positive normal forms presentation, thus simplifying the actual process of verification. We provide the syntax and semantics of our logics with a computer-assisted formalisation using the proof assistant Agda, and we round up the paper by highlighting the crucial aspects of our formalisation and the practical use of quantified temporal logics in a constructive proof assistant.

Unsupervised domain adaptation methods aim to generalize well on unlabeled test data that may have a different (shifted) distribution from the training data. Such methods are typically developed on image data, and their application to time series data is less explored. Existing works on time series domain adaptation suffer from inconsistencies in evaluation schemes, datasets, and backbone neural network architectures. Moreover, labeled target data are often used for model selection, which violates the fundamental assumption of unsupervised domain adaptation. To address these issues, we develop a benchmarking evaluation suite (AdaTime) to systematically and fairly evaluate different domain adaptation methods on time series data. Specifically, we standardize the backbone neural network architectures and benchmarking datasets, while also exploring more realistic model selection approaches that can work with no labeled data or just a few labeled samples. Our evaluation includes adapting state-of-the-art visual domain adaptation methods to time series data as well as the recent methods specifically developed for time series data. We conduct extensive experiments to evaluate 11 state-of-the-art methods on five representative datasets spanning 50 cross-domain scenarios. Our results suggest that with careful selection of hyper-parameters, visual domain adaptation methods are competitive with methods proposed for time series domain adaptation. In addition, we find that hyper-parameters could be selected based on realistic model selection approaches. Our work unveils practical insights for applying domain adaptation methods on time series data and builds a solid foundation for future works in the field. The code is available at \href{//github.com/emadeldeen24/AdaTime}{github.com/emadeldeen24/AdaTime}.

Current video text spotting methods can achieve preferable performance, powered with sufficient labeled training data. However, labeling data manually is time-consuming and labor-intensive. To overcome this, using low-cost synthetic data is a promising alternative. This paper introduces a novel video text synthesis technique called FlowText, which utilizes optical flow estimation to synthesize a large amount of text video data at a low cost for training robust video text spotters. Unlike existing methods that focus on image-level synthesis, FlowText concentrates on synthesizing temporal information of text instances across consecutive frames using optical flow. This temporal information is crucial for accurately tracking and spotting text in video sequences, including text movement, distortion, appearance, disappearance, shelter, and blur. Experiments show that combining general detectors like TransDETR with the proposed FlowText produces remarkable results on various datasets, such as ICDAR2015video and ICDAR2013video. Code is available at //github.com/callsys/FlowText.

Natural language generation from structured data mainly focuses on surface-level descriptions, suffering from uncontrollable content selection and low fidelity. Previous works leverage logical forms to facilitate logical knowledge-conditioned text generation. Though achieving remarkable progress, they are data-hungry, which makes the adoption for real-world applications challenging with limited data. To this end, this paper proposes a unified framework for logical knowledge-conditioned text generation in the few-shot setting. With only a few seeds logical forms (e.g., 20/100 shot), our approach leverages self-training and samples pseudo logical forms based on content and structure consistency. Experimental results demonstrate that our approach can obtain better few-shot performance than baselines.

In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.

Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, \ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司