亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a groundbreaking end-to-end (E2E) framework for decoding invasive brain signals, marking a significant advancement in the field of speech neuroprosthesis. Our methodology leverages the comprehensive reasoning abilities of large language models (LLMs) to facilitate direct decoding. By fully integrating LLMs, we achieve results comparable to the state-of-the-art cascade models. Our findings underscore the immense potential of E2E frameworks in speech neuroprosthesis, particularly as the technology behind brain-computer interfaces (BCIs) and the availability of relevant datasets continue to evolve. This work not only showcases the efficacy of combining LLMs with E2E decoding for enhancing speech neuroprosthesis but also sets a new direction for future research in BCI applications, underscoring the impact of LLMs in decoding complex neural signals for communication restoration. Code will be made available at //github.com/FsFrancis15/BrainLLM.

相關內容

In this paper, the authors introduce a lightweight dataset to interpret IoT (Internet of Things) activity in preparation to create decoys by replicating known data traffic patterns. The dataset comprises different scenarios in a real network setting. This paper also surveys information related to other IoT datasets along with the characteristics that make our data valuable. Many of the datasets available are synthesized (simulated) or often address industrial applications, while the IoT dataset we present is based on likely smart home scenarios. Further, there are only a limited number of IoT datasets that contain both normal operation and attack scenarios. A discussion of the network configuration and the steps taken to prepare this dataset are presented as we prepare to create replicative patterns for decoy purposes. The dataset, which we refer to as IoT Flex Data, consists of four categories, namely, IoT benign idle, IoT benign active, IoT setup, and malicious (attack) traffic associating the IoT devices with the scenarios under consideration.

In this paper, we address the development of a robotic rehabilitation system for the upper limbs based on collaborative end-effector solutions. The use of commercial collaborative robots offers significant advantages for this task, as they are optimized from an engineering perspective and ensure safe physical interaction with humans. However, they also come with noticeable drawbacks, such as the limited range of sizes available on the market and the standard control modes, which are primarily oriented towards industrial or service applications. To address these limitations, we propose an optimization-based design method to fully exploit the capability of the cobot in performing rehabilitation tasks. Additionally, we introduce a novel control architecture based on an admittance-type Virtual Fixture method, which constrains the motion of the robot along a prescribed path. This approach allows for an intuitive definition of the task to be performed via Programming by Demonstration and enables the system to operate both passively and actively. In passive mode, the system supports the patient during task execution with additional force, while in active mode, it opposes the motion with a braking force. Experimental results demonstrate the effectiveness of the proposed method.

In this paper, we introduce a novel approach for effectively reducing nonlinear distortion in single back-plate condenser microphones, i.e., most MEMS microphones, studio recording condenser microphones, and laboratory measurement microphones. This simple post-processing technique can be easily integrated on an external hardware such as an analog circuit, microcontroller, audio codec, DSP unit, or within the ASIC chip in a case of MEMS microphones. It significantly reduces microphone distortion across its frequency and dynamic range. It relies on a single parameter, which can be derived from either the microphone's physical parameters or a straightforward measurement presented in this paper. An optimal estimate of this parameter achieves the best distortion reduction, whereas overestimating it never increases distortion beyond the original level. The technique was tested on a MEMS microphone. Our findings indicate that for harmonic excitation the proposed technique reduces the second harmonic by approximately 40 dB, leading to a significant reduction in the Total Harmonic Distortion (THD). The efficiency of the distortion reduction technique for more complex signals is demonstrated through two-tone and multitone experiments, where second-order intermodulation products are reduced by at least 20 dB.

In this paper, we are comparing monolingual Wav2Vec 2.0 models with various multilingual models to see whether we could improve speech recognition performance on a unique oral history archive containing a lot of mixed-language sentences. Our main goal is to push forward research on this unique dataset, which is an extremely valuable part of our cultural heritage. Our results suggest that monolingual speech recognition models are, in most cases, superior to multilingual models, even when processing the oral history archive full of mixed-language sentences from non-native speakers. We also performed the same experiments on the public CommonVoice dataset to verify our results. We are contributing to the research community by releasing our pre-trained models to the public.

In this paper, we build a general model of memristors suitable for the simulation of event-based systems, such as hardware spiking neural networks, and more generally, neuromorphic computing systems. We extend an existing general model of memristors - the Generalised Metastable Switch Model - to an event-driven setting, eliminating errors associated discrete time approximation, as well as offering potential improvements in terms of computational efficiency for simulation. We introduce the notion of a volatility state variable, to allow for the modelling of memory-dependent and dynamic switching behaviour, succinctly capturing and unifying a variety of volatile phenomena present in memristive devices, including state relaxation, structural disruption, Joule heating, and drift acceleration phenomena. We supply a drift dataset for titanium dioxide memristors and introduce a linear conductance model to simulate the drift characteristics, motivated by a proposed physical model of filament growth. We then demonstrate an approach for fitting the parameters of the event-based model to the drift model.

In this paper, we investigated semantic communication for multi-task processing using an information-theoretic approach. We introduced the concept of a "semantic source", allowing multiple semantic interpretations from a single observation. We formulated an end-to-end optimization problem taking into account the communication channel, maximizing mutual information (infomax) to design the semantic encoding and decoding process exploiting the statistical relations between semantic variables. To solve the problem we perform data-driven deep learning employing variational approximation techniques. Our semantic encoder is divided into a common unit and multiple specific units to facilitate cooperative multi-task processing. Simulation results demonstrate the effectiveness of our proposed semantic source and system design when statistical relationships exist, comparing cooperative task processing with independent task processing. However, our findings highlight that cooperative multi-tasking is not always beneficial, emphasizing the importance of statistical relationships between tasks and indicating the need for further investigation into the semantically processing of multiple tasks.

In this paper, we introduce a novel and computationally efficient method for vertex embedding, community detection, and community size determination. Our approach leverages a normalized one-hot graph encoder and a rank-based cluster size measure. Through extensive simulations, we demonstrate the excellent numerical performance of our proposed graph encoder ensemble algorithm.

In this paper, we address the problem of enclosing an arbitrarily moving target in three dimensions by a single pursuer, which is an unmanned aerial vehicle (UAV), for maximum coverage while also ensuring the pursuer's safety by preventing collisions with the target. The proposed guidance strategy steers the pursuer to a safe region of space surrounding the target, allowing it to maintain a certain distance from the latter while offering greater flexibility in positioning and converging to any orbit within this safe zone. Our approach is distinguished by the use of nonholonomic constraints to model vehicles with accelerations serving as control inputs and coupled engagement kinematics to craft the pursuer's guidance law meticulously. Furthermore, we leverage the concept of the Lyapunov Barrier Function as a powerful tool to constrain the distance between the pursuer and the target within asymmetric bounds, thereby ensuring the pursuer's safety within the predefined region. To validate the efficacy and robustness of our algorithm, we conduct experimental tests by implementing a high-fidelity quadrotor model within Software-in-the-loop (SITL) simulations, encompassing various challenging target maneuver scenarios. The results obtained showcase the resilience of the proposed guidance law, effectively handling arbitrarily maneuvering targets, vehicle/autopilot dynamics, and external disturbances. Our method consistently delivers stable global enclosing behaviors, even in response to aggressive target maneuvers, and requires only relative information for successful execution.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司