亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multilingual information retrieval (MLIR) considers the problem of ranking documents in several languages for a query expressed in a language that may differ from any of those languages. Recent work has observed that approaches such as combining ranked lists representing a single document language each or using multilingual pretrained language models demonstrate a preference for one language over others. This results in systematic unfair treatment of documents in different languages. This work proposes a language fairness metric to evaluate whether documents across different languages are fairly ranked through statistical equivalence testing using the Kruskal-Wallis test. In contrast to most prior work in group fairness, we do not consider any language to be an unprotected group. Thus our proposed measure, PEER (Probability of EqualExpected Rank), is the first fairness metric specifically designed to capture the language fairness of MLIR systems. We demonstrate the behavior of PEER on artificial ranked lists. We also evaluate real MLIR systems on two publicly available benchmarks and show that the PEER scores align with prior analytical findings on MLIR fairness. Our implementation is compatible with ir-measures and is available at //github.com/hltcoe/peer_measure.

相關內容

Exploiting large language models (LLMs) to tackle reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex logical problems, characterized by plenty of premises within the prompt and requiring multi-hop reasoning. In particular, the reasoning capabilities of LLMs are brittle to disorder and distractibility. In this work, we first examine the mechanism from the perspective of information flow and reveal that LLMs exhibit failure patterns akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks. However, in contrast to LLMs, disordered and irrelevant content does not significantly decrease human performance, as humans have a propensity to distill the most relevant information and systematically organize their thoughts, aiding them in responding to questions. Stem from that, we further propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized context, the reasoning abilities of LLMs can be better elicited. Extensive experimental results on several popular logical benchmarks (ProofWriter, PrOntoQA, PrOntoQA-OOD, and FOLIO) and math benchmark (DI-GSM) show that COP significantly outperforms previous state-of-the-art methods.

Techniques for knowledge graph (KGs) enrichment have been increasingly crucial for commercial applications that rely on evolving product catalogues. However, because of the huge search space of potential enrichment, predictions from KG completion (KGC) methods suffer from low precision, making them unreliable for real-world catalogues. Moreover, candidate facts for enrichment have varied relevance to users. While making correct predictions for incomplete triplets in KGs has been the main focus of KGC method, the relevance of when to apply such predictions has been neglected. Motivated by the product search use case, we address the angle of generating relevant completion for a catalogue using user search behaviour and the users property association with a product. In this paper, we present our intuition for identifying enrichable data points and use general-purpose KGs to show-case the performance benefits. In particular, we extract entity-predicate pairs from user queries, which are more likely to be correct and relevant, and use these pairs to guide the prediction of KGC methods. We assess our method on two popular encyclopedia KGs, DBPedia and YAGO 4. Our results from both automatic and human evaluations show that query guidance can significantly improve the correctness and relevance of prediction.

Large language models (LLMs) exhibit emerging geospatial capabilities, stemming from their pre-training on vast unlabelled text datasets that are often derived from the Common Crawl corpus. However, the geospatial content within CC remains largely unexplored, impacting our understanding of LLMs' spatial reasoning. This paper investigates the prevalence of geospatial data in recent Common Crawl releases using Gemini, a powerful language model. By analyzing a sample of documents and manually revising the results, we estimate that between 1 in 5 and 1 in 6 documents contain geospatial information such as coordinates and street addresses. Our findings provide quantitative insights into the nature and extent of geospatial data within Common Crawl, and web crawl data in general. Furthermore, we formulate questions to guide future investigations into the geospatial content of available web crawl datasets and its influence on LLMs.

Large language models (LLMs) can suffer from hallucinations when generating text. These hallucinations impede various applications in society and industry by making LLMs untrustworthy. Current LLMs generate text in an autoregressive fashion by predicting and appending text tokens. When an LLM is uncertain about the semantic meaning of the next tokens to generate, it is likely to start hallucinating. Thus, it has been suggested that hallucinations stem from predictive uncertainty. We introduce Semantically Diverse Language Generation (SDLG) to quantify predictive uncertainty in LLMs. SDLG steers the LLM to generate semantically diverse yet likely alternatives for an initially generated text. This approach provides a precise measure of aleatoric semantic uncertainty, detecting whether the initial text is likely to be hallucinated. Experiments on question-answering tasks demonstrate that SDLG consistently outperforms existing methods while being the most computationally efficient, setting a new standard for uncertainty estimation in LLMs.

Many classic Reinforcement Learning (RL) algorithms rely on a Bellman operator, which involves an expectation over the next states, leading to the concept of bootstrapping. To introduce a form of pessimism, we propose to replace this expectation with an expectile. In practice, this can be very simply done by replacing the $L_2$ loss with a more general expectile loss for the critic. Introducing pessimism in RL is desirable for various reasons, such as tackling the overestimation problem (for which classic solutions are double Q-learning or the twin-critic approach of TD3) or robust RL (where transitions are adversarial). We study empirically these two cases. For the overestimation problem, we show that the proposed approach, ExpectRL, provides better results than a classic twin-critic. On robust RL benchmarks, involving changes of the environment, we show that our approach is more robust than classic RL algorithms. We also introduce a variation of ExpectRL combined with domain randomization which is competitive with state-of-the-art robust RL agents. Eventually, we also extend \ExpectRL with a mechanism for choosing automatically the expectile value, that is the degree of pessimism

In speech emotion recognition (SER), using predefined features without considering their practical importance may lead to high dimensional datasets, including redundant and irrelevant information. Consequently, high-dimensional learning often results in decreasing model accuracy while increasing computational complexity. Our work underlines the importance of carefully considering and analyzing features in order to build efficient SER systems. We present a new supervised SER method based on an efficient feature engineering approach. We pay particular attention to the explainability of results to evaluate feature relevance and refine feature sets. This is performed iteratively through feature evaluation loop, using Shapley values to boost feature selection and improve overall framework performance. Our approach allows thus to balance the benefits between model performance and transparency. The proposed method outperforms human-level performance (HLP) and state-of-the-art machine learning methods in emotion recognition on the TESS dataset. The source code of this paper is publicly available at //github.com/alaaNfissi/Iterative-Feature-Boosting-for-Explainable-Speech-Emotion-Recognition.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司