The current paradigm of training deep neural networks for classification tasks includes minimizing the empirical risk that pushes the training loss value towards zero, even after the training error has been vanished. In this terminal phase of training, it has been observed that the last-layer features collapse to their class-means and these class-means converge to the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is termed as Neural Collapse (NC). To theoretically understand this phenomenon, recent works employ a simplified unconstrained feature model to prove that NC emerges at the global solutions of the training problem. However, when the training dataset is class-imbalanced, some NC properties will no longer be true. For example, the class-means geometry will skew away from the simplex ETF when the loss converges. In this paper, we generalize NC to imbalanced regime for cross-entropy loss under the unconstrained ReLU feature model. We prove that, while the within-class features collapse property still holds in this setting, the class-means will converge to a structure consisting of orthogonal vectors with different lengths. Furthermore, we find that the classifier weights are aligned to the scaled and centered class-means with scaling factors depend on the number of training samples of each class, which generalizes NC in the class-balanced setting. We empirically prove our results through experiments on practical architectures and dataset.
Bayesian networks model relationships between random variables under uncertainty and can be used to predict the likelihood of events and outcomes while incorporating observed evidence. From an eXplainable AI (XAI) perspective, such models are interesting as they tend to be compact. Moreover, captured relations can be directly inspected by domain experts. In practice, data is often real-valued. Unless assumptions of normality can be made, discretization is often required. The optimal discretization, however, depends on the relations modelled between the variables. This complicates learning Bayesian networks from data. For this reason, most literature focuses on learning conditional dependencies between sets of variables, called structure learning. In this work, we extend an existing state-of-the-art structure learning approach based on the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) to jointly learn variable discretizations. The proposed Discretized Bayesian Network GOMEA (DBN-GOMEA) obtains similar or better results than the current state-of-the-art when tasked to retrieve randomly generated ground-truth networks. Moreover, leveraging a key strength of evolutionary algorithms, we can straightforwardly perform DBN learning multi-objectively. We show how this enables incorporating expert knowledge in a uniquely insightful fashion, finding multiple DBNs that trade-off complexity, accuracy, and the difference with a pre-determined expert network.
A significant bottleneck in applying current reinforcement learning algorithms to real-world scenarios is the need to reset the environment between every episode. This reset process demands substantial human intervention, making it difficult for the agent to learn continuously and autonomously. Several recent works have introduced autonomous reinforcement learning (ARL) algorithms that generate curricula for jointly training reset and forward policies. While their curricula can reduce the number of required manual resets by taking into account the agent's learning progress, they rely on task-specific knowledge, such as predefined initial states or reset reward functions. In this paper, we propose a novel ARL algorithm that can generate a curriculum adaptive to the agent's learning progress without task-specific knowledge. Our curriculum empowers the agent to autonomously reset to diverse and informative initial states. To achieve this, we introduce a success discriminator that estimates the success probability from each initial state when the agent follows the forward policy. The success discriminator is trained with relabeled transitions in a self-supervised manner. Our experimental results demonstrate that our ARL algorithm can generate an adaptive curriculum and enable the agent to efficiently bootstrap to solve sparse-reward maze navigation and manipulation tasks, outperforming baselines with significantly fewer manual resets.
The internet of things (IoT) based wireless sensor networks (WSNs) face an energy shortage challenge that could be overcome by the novel wireless power transfer (WPT) technology. The combination of WSNs and WPT is known as wireless rechargeable sensor networks (WRSNs), with the charging efficiency and charging scheduling being the primary concerns. Therefore, this paper proposes a probabilistic on-demand charging scheduling for integrated sensing and communication (ISAC)-assisted WRSNs with multiple mobile charging vehicles (MCVs) that addresses three parts. First, it considers the four attributes with their probability distributions to balance the charging load on each MCV. The distributions are residual energy of charging node, distance from MCV to charging node, degree of charging node, and charging node betweenness centrality. Second, it considers the efficient charging factor strategy to partially charge network nodes. Finally, it employs the ISAC concept to efficiently utilize the wireless resources to reduce the traveling cost of each MCV and to avoid the charging conflicts between them. The simulation results show that the proposed protocol outperforms cutting-edge protocols in terms of energy usage efficiency, charging delay, survival rate, and travel distance.
Among the various Ultra-wideband (UWB) ranging methods, the absence of uplink communication or centralized computation makes downlink time-difference-of-arrival (DL-TDOA) localization the most suitable for large-scale industrial deployments. However, temporary or permanent obstacles in the deployment region often lead to non-line-of-sight (NLOS) channel path and signal outage effects, which result in localization errors. Prior research has addressed this problem by increasing the ranging frequency, which leads to a heavy increase in the user device power consumption. It also does not contribute to any increase in localization accuracy under line-of-sight (LOS) conditions. In this paper, we propose and implement a novel low-power channel-aware dynamic frequency DL-TDOA ranging algorithm. It comprises NLOS probability predictor based on a convolutional neural network (CNN), a dynamic ranging frequency control module, and an IMU sensor-based ranging filter. Based on the conducted experiments, we show that the proposed algorithm achieves 50% higher accuracy in NLOS conditions while having 46% lower power consumption in LOS conditions compared to baseline methods from prior research.
One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.
Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.