亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a previous paper, a technique was suggested to avoid order reduction with any explicit exponential Runge-Kutta method when integrating initial boundary value nonlinear problems with time-dependent boundary conditions. In this paper, we significantly simplify the full discretization formulas to be applied under conditions which are nearly always satisfied in practice. Not only a simpler linear combination of $\varphi_j$-functions is given for both the stages and the solution, but also the information required on the boundary is so much simplified that, in order to get local order three, it is no longer necessary to resort to numerical differentiation in space. The technique is then shown to be computationally competitive against other widely used methods with high enough stiff order through the standard method of lines.

相關內容

Decoder-only Large Language Models (LLMs) have demonstrated potential in machine translation (MT), albeit with performance slightly lagging behind traditional encoder-decoder Neural Machine Translation (NMT) systems. However, LLMs offer a unique advantage: the ability to control the properties of the output through prompts. In this study, we harness this flexibility to explore LLaMa's capability to produce gender-specific translations for languages with grammatical gender. Our results indicate that LLaMa can generate gender-specific translations with competitive accuracy and gender bias mitigation when compared to NLLB, a state-of-the-art multilingual NMT system. Furthermore, our experiments reveal that LLaMa's translations are robust, showing significant performance drops when evaluated against opposite-gender references in gender-ambiguous datasets but maintaining consistency in less ambiguous contexts. This research provides insights into the potential and challenges of using LLMs for gender-specific translations and highlights the importance of in-context learning to elicit new tasks in LLMs.

In this paper we present a technique of NLP to tackle the problem of inference relation (NLI) between pairs of sentences in a target language of choice without a language-specific training dataset. We exploit a generic translation dataset, manually translated, along with two instances of the same pre-trained model - the first to generate sentence embeddings for the source language, and the second fine-tuned over the target language to mimic the first. This technique is known as Knowledge Distillation. The model has been evaluated over machine translated Stanford NLI test dataset, machine translated Multi-Genre NLI test dataset, and manually translated RTE3-ITA test dataset. We also test the proposed architecture over different tasks to empirically demonstrate the generality of the NLI task. The model has been evaluated over the native Italian ABSITA dataset, on the tasks of Sentiment Analysis, Aspect-Based Sentiment Analysis, and Topic Recognition. We emphasise the generality and exploitability of the Knowledge Distillation technique that outperforms other methodologies based on machine translation, even though the former was not directly trained on the data it was tested over.

Human emotion recognition plays an important role in human-computer interaction. In this paper, we present our approach to the Valence-Arousal (VA) Estimation Challenge, Expression (Expr) Classification Challenge, and Action Unit (AU) Detection Challenge of the 5th Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW). Specifically, we propose a novel multi-modal fusion model that leverages Temporal Convolutional Networks (TCN) and Transformer to enhance the performance of continuous emotion recognition. Our model aims to effectively integrate visual and audio information for improved accuracy in recognizing emotions. Our model outperforms the baseline and ranks 3 in the Expression Classification challenge.

In this work, we develop first-order (Hessian-free) and zero-order (derivative-free) implementations of the Cubically regularized Newton method for solving general non-convex optimization problems. For that, we employ finite difference approximations of the derivatives. We use a special adaptive search procedure in our algorithms, which simultaneously fits both the regularization constant and the parameters of the finite difference approximations. It makes our schemes free from the need to know the actual Lipschitz constants. Additionally, we equip our algorithms with the lazy Hessian update that reuse a previously computed Hessian approximation matrix for several iterations. Specifically, we prove the global complexity bound of $\mathcal{O}( n^{1/2} \epsilon^{-3/2})$ function and gradient evaluations for our new Hessian-free method, and a bound of $\mathcal{O}( n^{3/2} \epsilon^{-3/2} )$ function evaluations for the derivative-free method, where $n$ is the dimension of the problem and $\epsilon$ is the desired accuracy for the gradient norm. These complexity bounds significantly improve the previously known ones in terms of the joint dependence on $n$ and $\epsilon$, for the first-order and zeroth-order non-convex optimization.

In this paper, we introduce a new first-order mixture integer-valued threshold autoregressive process, based on the binomial and negative binomial thinning operators. Basic probabilistic and statistical properties of this model are discussed. Conditional least squares (CLS) and conditional maximum likelihood (CML) estimators are derived and the asymptotic properties of the estimators are established. The inference for the threshold parameter is obtained based on the CLS and CML score functions. Moreover, the Wald test is applied to detect the existence of the piecewise structure. Simulation studies are considered, along with an application: the number of criminal mischief incidents in the Pittsburgh dataset.

We develop an information-theoretic approach to study the Kneser--Poulsen conjecture in discrete geometry. This leads us to a broad question regarding whether R\'enyi entropies of independent sums decrease when one of the summands is contracted by a $1$-Lipschitz map. We answer this question affirmatively in various cases.

Building on Dryden et al. (2021), this note presents the Bayesian estimation of a regression model for size-and-shape response variables with Gaussian landmarks. Our proposal fits into the framework of Bayesian latent variable models and allows a highly flexible modelling framework.

In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. Firstly, we analyze the symplectic conditions for two kinds of exponential integrators and obtain the symplectic method. In order to effectively solve highly oscillatory problems, we try to design the highly accurate implicit ERK integrators. By comparing the Taylor series expansion of numerical solution with exact solution, it can be verified that the order conditions of two new kinds of exponential methods are identical to classical Runge-Kutta (RK) methods, which implies that using the coefficients of RK methods, some highly accurate numerical methods are directly formulated. Furthermore, we also investigate the linear stability properties for these exponential methods. Finally, numerical results not only display the long time energy preservation of the symplectic method, but also present the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

北京阿比特科技有限公司