亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In causal inference, treatment effects are typically estimated under the ignorability, or unconfoundedness, assumption, which is often unrealistic in observational data. By relaxing this assumption and conducting a sensitivity analysis, we introduce novel bounds and derive confidence intervals for the Average Potential Outcome (APO) - a standard metric for evaluating continuous-valued treatment or exposure effects. We demonstrate that these bounds are sharp under a continuous sensitivity model, in the sense that they give the smallest possible interval under this model, and propose a doubly robust version of our estimators. In a comparative analysis with the method of Jesson et al. (2022) (arXiv:2204.10022), using both simulated and real datasets, we show that our approach not only yields sharper bounds but also achieves good coverage of the true APO, with significantly reduced computation times.

相關內容

Public policies and medical interventions often involve dynamics in their treatment assignments, where individuals receive a series of interventions over multiple stages. We study the statistical learning of optimal dynamic treatment regimes (DTRs) that guide the optimal treatment assignment for each individual at each stage based on the individual's evolving history. We propose a doubly robust, classification-based approach to learning the optimal DTR using observational data under the assumption of sequential ignorability. This approach learns the optimal DTR through backward induction. At each step, it constructs an augmented inverse probability weighting (AIPW) estimator of the policy value function and maximizes it to learn the optimal policy for the corresponding stage. We show that the resulting DTR can achieve an optimal convergence rate of $n^{-1/2}$ for welfare regret under mild convergence conditions on estimators of the nuisance components.

Constructing confidence intervals (CIs) for the average treatment effect (ATE) from patient records is crucial to assess the effectiveness and safety of drugs. However, patient records typically come from different hospitals, thus raising the question of how multiple observational datasets can be effectively combined for this purpose. In our paper, we propose a new method that estimates the ATE from multiple observational datasets and provides valid CIs. Our method makes little assumptions about the observational datasets and is thus widely applicable in medical practice. The key idea of our method is that we leverage prediction-powered inferences and thereby essentially `shrink' the CIs so that we offer more precise uncertainty quantification as compared to na\"ive approaches. We further prove the unbiasedness of our method and the validity of our CIs. We confirm our theoretical results through various numerical experiments. Finally, we provide an extension of our method for constructing CIs from combinations of experimental and observational datasets.

The ability of a robot to plan complex behaviors with real-time computation, rather than adhering to predesigned or offline-learned routines, alleviates the need for specialized algorithms or training for each problem instance. Monte Carlo Tree Search is a powerful planning algorithm that strategically explores simulated future possibilities, but it requires a discrete problem representation that is irreconcilable with the continuous dynamics of the physical world. We present Spectral Expansion Tree Search (SETS), a real-time, tree-based planner that uses the spectrum of the locally linearized system to construct a low-complexity and approximately equivalent discrete representation of the continuous world. We prove SETS converges to a bound of the globally optimal solution for continuous, deterministic and differentiable Markov Decision Processes, a broad class of problems that includes underactuated nonlinear dynamics, non-convex reward functions, and unstructured environments. We experimentally validate SETS on drone, spacecraft, and ground vehicle robots and one numerical experiment, each of which is not directly solvable with existing methods. We successfully show SETS automatically discovers a diverse set of optimal behaviors and motion trajectories in real time.

To test scientific theories and develop individualized treatment rules, researchers often wish to learn heterogeneous treatment effects that can be consistently found across diverse populations and contexts. We consider the problem of generalizing heterogeneous treatment effects (HTE) based on data from multiple sites. A key challenge is that a target population may differ from the source sites in unknown and unobservable ways. This means that the estimates from site-specific models lack external validity, and a simple pooled analysis risks bias. We develop a robust CATE (conditional average treatment effect) estimation methodology with multisite data from heterogeneous populations. We propose a minimax-regret framework that learns a generalizable CATE model by minimizing the worst-case regret over a class of target populations whose CATE can be represented as convex combinations of site-specific CATEs. Using robust optimization, the proposed methodology accounts for distribution shifts in both individual covariates and treatment effect heterogeneity across sites. We show that the resulting CATE model has an interpretable closed-form solution, expressed as a weighted average of site-specific CATE models. Thus, researchers can utilize a flexible CATE estimation method within each site and aggregate site-specific estimates to produce the final model. Through simulations and a real-world application, we show that the proposed methodology improves the robustness and generalizability of existing approaches.

The rapid advancement of ML models in critical sectors such as healthcare, finance, and security has intensified the need for robust data security, model integrity, and reliable outputs. Large multimodal foundational models, while crucial for complex tasks, present challenges in scalability, reliability, and potential misuse. Decentralized systems offer a solution by distributing workload and mitigating central points of failure, but they introduce risks of unauthorized access to sensitive data across nodes. We address these challenges with a comprehensive framework designed for responsible AI development. Our approach incorporates: 1) Zero-knowledge proofs for secure model verification, enhancing trust without compromising privacy. 2) Consensus-based verification checks to ensure consistent outputs across nodes, mitigating hallucinations and maintaining model integrity. 3) Split Learning techniques that segment models across different nodes, preserving data privacy by preventing full data access at any point. 4) Hardware-based security through trusted execution environments (TEEs) to protect data and computations. This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems. Promoting efficient resource utilization contributes to more sustainable AI development. Our state-of-the-art proofs and principles demonstrate the framework's effectiveness in responsibly democratizing artificial intelligence, offering a promising approach for building secure and private foundational models.

Pathological diagnosis is vital for determining disease characteristics, guiding treatment, and assessing prognosis, relying heavily on detailed, multi-scale analysis of high-resolution whole slide images (WSI). However, traditional pure vision models face challenges of redundant feature extraction, whereas existing large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy. To overcome these issues, we propose two innovative strategies: the mixed task-guided feature enhancement, which directs feature extraction toward lesion-related details across scales, and the prompt-guided detail feature completion, which integrates coarse- and fine-grained features from WSI based on specific prompts without compromising inference speed. Leveraging a comprehensive dataset of 490,000 samples from diverse pathology tasks-including cancer detection, grading, vascular and neural invasion identification, and so on-we trained the pathology-specialized LVLM, OmniPath. Extensive experiments demonstrate that this model significantly outperforms existing methods in diagnostic accuracy and efficiency, offering an interactive, clinically aligned approach for auxiliary diagnosis in a wide range of pathology applications.

Consider the scenario where multiple agents have to move in an optimal way through a network, each one towards their ending position while avoiding collisions. By optimal, we mean as fast as possible, which is evaluated by a measure known as the makespan of the proposed solution. This is the setting studied in the Multiagent Path Finding problem. In this work, we additionally provide the agents with a way to communicate with each other. Due to size constraints, it is reasonable to assume that the range of communication of each agent will be limited. What should be the trajectories of the agents to, additionally, maintain a backbone of communication? In this work, we study the Multiagent Path Finding with Communication Constraint problem under the parameterized complexity framework. Our main contribution is three exact algorithms that are efficient when considering particular structures for the input network. We provide such algorithms for the case when the communication range and the number of agents (the makespan resp.) are provided in the input and the network has a tree topology, or bounded maximum degree (has a tree-like topology, i.e., bounded treewidth resp.). We complement these results by showing that it is highly unlikely to construct efficient algorithms when considering the number of agents as part of the input, even if the makespan is $3$ and the communication range is $1$.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司