亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the era of widespread public use of AI systems across various domains, ensuring adversarial robustness has become increasingly vital to maintain safety and prevent undesirable errors. Researchers have curated various adversarial datasets (through perturbations) for capturing model deficiencies that cannot be revealed in standard benchmark datasets. However, little is known about how these adversarial examples differ from the original data points, and there is still no methodology to measure the intended and unintended consequences of those adversarial transformations. In this research, we conducted a systematic survey of existing quantifiable metrics that describe text instances in NLP tasks, among dimensions of difficulty, diversity, and disagreement. We selected several current adversarial effect datasets and compared the distributions between the original and their adversarial counterparts. The results provide valuable insights into what makes these datasets more challenging from a metrics perspective and whether they align with underlying assumptions.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Classical regression models do not cover non-Euclidean data that reside in a general metric space, while the current literature on non-Euclidean regression by and large has focused on scenarios where either predictors or responses are random objects, i.e., non-Euclidean, but not both. In this paper we propose geodesic optimal transport regression models for the case where both predictors and responses lie in a common geodesic metric space and predictors may include not only one but also several random objects. This provides an extension of classical multiple regression to the case where both predictors and responses reside in non-Euclidean metric spaces, a scenario that has not been considered before. It is based on the concept of optimal geodesic transports, which we define as an extension of the notion of optimal transports in distribution spaces to more general geodesic metric spaces, where we characterize optimal transports as transports along geodesics. The proposed regression models cover the relation between non-Euclidean responses and vectors of non-Euclidean predictors in many spaces of practical statistical interest. These include one-dimensional distributions viewed as elements of the 2-Wasserstein space and multidimensional distributions with the Fisher-Rao metric that are represented as data on the Hilbert sphere. Also included are data on finite-dimensional Riemannian manifolds, with an emphasis on spheres, covering directional and compositional data, as well as data that consist of symmetric positive definite matrices. We illustrate the utility of geodesic optimal transport regression with data on summer temperature distributions and human mortality.

As artificial intelligence (AI) systems become increasingly integrated into various domains, ensuring that they align with human values becomes critical. This paper introduces a novel formalism to quantify the alignment between AI systems and human values, using Markov Decision Processes (MDPs) as the foundational model. We delve into the concept of values as desirable goals tied to actions and norms as behavioral guidelines, aiming to shed light on how they can be used to guide AI decisions. This framework offers a mechanism to evaluate the degree of alignment between norms and values by assessing preference changes across state transitions in a normative world. By utilizing this formalism, AI developers and ethicists can better design and evaluate AI systems to ensure they operate in harmony with human values. The proposed methodology holds potential for a wide range of applications, from recommendation systems emphasizing well-being to autonomous vehicles prioritizing safety.

Demand for blockchains such as Bitcoin and Ethereum is far larger than supply, necessitating a mechanism that selects a subset of transactions to include "on-chain" from the pool of all pending transactions. This paper investigates the problem of designing a blockchain transaction fee mechanism through the lens of mechanism design. We introduce two new forms of incentive-compatibility that capture some of the idiosyncrasies of the blockchain setting, one (MMIC) that protects against deviations by profit-maximizing miners and one (OCA-proofness) that protects against off-chain collusion between miners and users. This study is immediately applicable to a recent (August 5, 2021) and major change to Ethereum's transaction fee mechanism, based on a proposal called "EIP-1559." Historically, Ethereum's transaction fee mechanism was a first-price (pay-as-bid) auction. EIP-1559 suggested making several tightly coupled changes, including the introduction of variable-size blocks, a history-dependent reserve price, and the burning of a significant portion of the transaction fees. We prove that this new mechanism earns an impressive report card: it satisfies the MMIC and OCA-proofness conditions, and is also dominant-strategy incentive compatible (DSIC) except when there is a sudden demand spike. We also introduce an alternative design, the "tipless mechanism," which offers an incomparable slate of incentive-compatibility guarantees -- it is MMIC and DSIC, and OCA-proof unless in the midst of a demand spike.

As deep neural networks are increasingly deployed in sensitive application domains, such as healthcare and security, it's necessary to understand what kind of sensitive information can be inferred from these models. Existing model-targeted attacks all assume the attacker has known the application domain or training data distribution, which plays an essential role in successful attacks. Can removing the domain information from model APIs protect models from these attacks? This paper studies this critical problem. Unfortunately, even with minimal knowledge, i.e., accessing the model as an unnamed function without leaking the meaning of input and output, the proposed adaptive domain inference attack (ADI) can still successfully estimate relevant subsets of training data. We show that the extracted relevant data can significantly improve, for instance, the performance of model-inversion attacks. Specifically, the ADI method utilizes a concept hierarchy built on top of a large collection of available public and private datasets and a novel algorithm to adaptively tune the likelihood of leaf concepts showing up in the unseen training data. The ADI attack not only extracts partial training data at the concept level, but also converges fast and requires much fewer target-model accesses than another domain inference attack, GDI.

Factor analysis is a statistical technique that explains correlations among observed random variables with the help of a smaller number of unobserved factors. In traditional full factor analysis, each observed variable is influenced by every factor. However, many applications exhibit interesting sparsity patterns, that is, each observed variable only depends on a subset of the factors. In this paper, we study such sparse factor analysis models from an algebro-geometric perspective. Under a mild condition on the sparsity pattern, we compute the dimension of the set of covariance matrices that corresponds to a given model. Moreover, we study algebraic relations among the covariances in sparse two-factor models. In particular, we identify cases in which a Gr\"obner basis for these relations can be derived via a 2-delightful term order and joins of toric edge ideals.

In recent years, trust region on-policy reinforcement learning has achieved impressive results in addressing complex control tasks and gaming scenarios. However, contemporary state-of-the-art algorithms within this category primarily emphasize improvement in expected performance, lacking the ability to control over the worst-case performance outcomes. To address this limitation, we introduce a novel objective function; by optimizing which, it will lead to guaranteed monotonic improvement in the lower bound of near-total performance samples (absolute performance). Considering this groundbreaking theoretical advancement, we then refine this theoretically grounded algorithm through a series of approximations, resulting in a practical solution called Absolute Policy Optimization (APO). Our experiments demonstrate the effectiveness of our approach across challenging continuous control benchmark tasks and extend its applicability to mastering Atari games. Our findings reveal that APO significantly outperforms state-of-the-art policy gradient algorithms, resulting in substantial improvements in both expected performance and worst-case performance.

The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.

Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

北京阿比特科技有限公司