Federated learning is a decentralized machine learning paradigm that allows multiple clients to collaborate by leveraging local computational power and the models transmission. This method reduces the costs and privacy concerns associated with centralized machine learning methods while ensuring data privacy by distributing training data across heterogeneous devices. On the other hand, federated learning has the drawback of data leakage due to the lack of privacy-preserving mechanisms employed during storage, transfer, and sharing, thus posing significant risks to data owners and suppliers. Blockchain technology has emerged as a promising technology for offering secure data-sharing platforms in federated learning, especially in Industrial Internet of Things (IIoT) settings. This survey aims to compare the performance and security of various data privacy mechanisms adopted in blockchain-based federated learning architectures. We conduct a systematic review of existing literature on secure data-sharing platforms for federated learning provided by blockchain technology, providing an in-depth overview of blockchain-based federated learning, its essential components, and discussing its principles, and potential applications. The primary contribution of this survey paper is to identify critical research questions and propose potential directions for future research in blockchain-based federated learning.
Though many deep learning (DL)-based vulnerability detection approaches have been proposed and indeed achieved remarkable performance, they still have limitations in the generalization as well as the practical usage. More precisely, existing DL-based approaches (1) perform negatively on prediction tasks among functions that are lexically similar but have contrary semantics; (2) provide no intuitive developer-oriented explanations to the detected results. In this paper, we propose a novel approach named SVulD, a function-level Subtle semantic embedding for Vulnerability Detection along with intuitive explanations, to alleviate the above limitations. Specifically, SVulD firstly trains a model to learn distinguishing semantic representations of functions regardless of their lexical similarity. Then, for the detected vulnerable functions, SVulD provides natural language explanations (e.g., root cause) of results to help developers intuitively understand the vulnerabilities. To evaluate the effectiveness of SVulD, we conduct large-scale experiments on a widely used practical vulnerability dataset and compare it with four state-of-the-art (SOTA) approaches by considering five performance measures. The experimental results indicate that SVulD outperforms all SOTAs with a substantial improvement (i.e., 23.5%-68.0% in terms of F1-score, 15.9%-134.8% in terms of PR-AUC and 7.4%-64.4% in terms of Accuracy). Besides, we conduct a user-case study to evaluate the usefulness of SVulD for developers on understanding the vulnerable code and the participants' feedback demonstrates that SVulD is helpful for development practice.
Q-learning has become an important part of the reinforcement learning toolkit since its introduction in the dissertation of Chris Watkins in the 1980s. The purpose of this paper is in part a tutorial on stochastic approximation and Q-learning, providing details regarding the INFORMS APS inaugural Applied Probability Trust Plenary Lecture, presented in Nancy France, June 2023. The paper also presents new approaches to ensure stability and potentially accelerated convergence for these algorithms, and stochastic approximation in other settings. Two contributions are entirely new: 1. Stability of Q-learning with linear function approximation has been an open topic for research for over three decades. It is shown that with appropriate optimistic training in the form of a modified Gibbs policy, there exists a solution to the projected Bellman equation, and the algorithm is stable (in terms of bounded parameter estimates). Convergence remains one of many open topics for research. 2. The new Zap Zero algorithm is designed to approximate the Newton-Raphson flow without matrix inversion. It is stable and convergent under mild assumptions on the mean flow vector field for the algorithm, and compatible statistical assumption on an underlying Markov chain. The algorithm is a general approach to stochastic approximation which in particular applies to Q-learning with "oblivious" training even with non-linear function approximation.
Deep learning has been widely adopted to tackle various code-based tasks by building deep code models based on a large amount of code snippets. While these deep code models have achieved great success, even state-of-the-art models suffer from noise present in inputs leading to erroneous predictions. While it is possible to enhance models through retraining/fine-tuning, this is not a once-and-for-all approach and incurs significant overhead. In particular, these techniques cannot on-the-fly improve performance of (deployed) models. There are currently some techniques for input denoising in other domains (such as image processing), but since code input is discrete and must strictly abide by complex syntactic and semantic constraints, input denoising techniques in other fields are almost not applicable. In this work, we propose the first input denoising technique (i.e., CodeDenoise) for deep code models. Its key idea is to localize noisy identifiers in (likely) mispredicted inputs, and denoise such inputs by cleansing the located identifiers. It does not need to retrain or reconstruct the model, but only needs to cleanse inputs on-the-fly to improve performance. Our experiments on 18 deep code models (i.e., three pre-trained models with six code-based datasets) demonstrate the effectiveness and efficiency of CodeDenoise. For example, on average, CodeDenoise successfully denoises 21.91% of mispredicted inputs and improves the original models by 2.04% in terms of the model accuracy across all the subjects in an average of 0.48 second spent on each input, substantially outperforming the widely-used fine-tuning strategy.
Federated learning (FL) is a distributed machine learning (ML) framework where multiple clients collaborate to train a model without exposing their private data. FL involves cycles of local computations and bi-directional communications between the clients and server. To bolster data security during this process, FL algorithms frequently employ a differential privacy (DP) mechanism that introduces noise into each client's model updates before sharing. However, while enhancing privacy, the DP mechanism often hampers convergence performance. In this paper, we posit that an optimal balance exists between the number of local steps and communication rounds, one that maximizes the convergence performance within a given privacy budget. Specifically, we present a proof for the optimal number of local steps and communication rounds that enhance the convergence bounds of the DP version of the ScaffNew algorithm. Our findings reveal a direct correlation between the optimal number of local steps, communication rounds, and a set of variables, e.g the DP privacy budget and other problem parameters, specifically in the context of strongly convex optimization. We furthermore provide empirical evidence to validate our theoretical findings.
Deep learning has made significant strides in video understanding tasks, but the computation required to classify lengthy and massive videos using clip-level video classifiers remains impractical and prohibitively expensive. To address this issue, we propose Audio-Visual Glance Network (AVGN), which leverages the commonly available audio and visual modalities to efficiently process the spatio-temporally important parts of a video. AVGN firstly divides the video into snippets of image-audio clip pair and employs lightweight unimodal encoders to extract global visual features and audio features. To identify the important temporal segments, we use an Audio-Visual Temporal Saliency Transformer (AV-TeST) that estimates the saliency scores of each frame. To further increase efficiency in the spatial dimension, AVGN processes only the important patches instead of the whole images. We use an Audio-Enhanced Spatial Patch Attention (AESPA) module to produce a set of enhanced coarse visual features, which are fed to a policy network that produces the coordinates of the important patches. This approach enables us to focus only on the most important spatio-temporally parts of the video, leading to more efficient video recognition. Moreover, we incorporate various training techniques and multi-modal feature fusion to enhance the robustness and effectiveness of our AVGN. By combining these strategies, our AVGN sets new state-of-the-art performance in multiple video recognition benchmarks while achieving faster processing speed.
Federated learning (FL) is a distributed machine learning paradigm that needs collaboration between a server and a series of clients with decentralized data. To make FL effective in real-world applications, existing work devotes to improving the modeling of decentralized data with non-independent and identical distributions (non-IID). In non-IID settings, there are intra-client inconsistency that comes from the imbalanced data modeling, and inter-client inconsistency among heterogeneous client distributions, which not only hinders sufficient representation of the minority data, but also brings discrepant model deviations. However, previous work overlooks to tackle the above two coupling inconsistencies together. In this work, we propose FedRANE, which consists of two main modules, i.e., local relational augmentation (LRA) and global Nash equilibrium (GNE), to resolve intra- and inter-client inconsistency simultaneously. Specifically, in each client, LRA mines the similarity relations among different data samples and enhances the minority sample representations with their neighbors using attentive message passing. In server, GNE reaches an agreement among inconsistent and discrepant model deviations from clients to server, which encourages the global model to update in the direction of global optimum without breaking down the clients optimization toward their local optimums. We conduct extensive experiments on four benchmark datasets to show the superiority of FedRANE in enhancing the performance of FL with non-IID data.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.
While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.