{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$_\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

相關內容

 生成對抗網絡 (Generative Adversarial Network, GAN) 是一類神經網絡,通過輪流訓練判別器 (Discriminator) 和生成器 (Generator),令其相互對抗,來從復雜概率分布中采樣,例如生成圖片、文字、語音等。GAN 最初由 Ian Goodfellow 提出,原論文見 Generative Adversarial Networks

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover from the biased data the true state, which is the solution of the PDE. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a simple time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from biased data for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only 2\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

Aqueous solubility is a valuable yet challenging property to predict. Computing solubility using first-principles methods requires accounting for the competing effects of entropy and enthalpy, resulting in long computations for relatively poor accuracy. Data-driven approaches, such as deep learning, offer improved accuracy and computational efficiency but typically lack uncertainty quantification. Additionally, ease of use remains a concern for any computational technique, resulting in the sustained popularity of group-based contribution methods. In this work, we addressed these problems with a deep learning model with predictive uncertainty that runs on a static website (without a server). This approach moves computing needs onto the website visitor without requiring installation, removing the need to pay for and maintain servers. Our model achieves satisfactory results in solubility prediction. Furthermore, we demonstrate how to create molecular property prediction models that balance uncertainty and ease of use. The code is available at //github.com/ur-whitelab/mol.dev, and the model is usable at //mol.dev.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司
\gamma$) and total excitation energy (E 宁毅静平公主小说免费阅读,亚洲专区中文字幕专区,日本一卡二卡卡四卡精品,国产在线视频一区二区观看 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$_\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

相關內容

 生成對抗網絡 (Generative Adversarial Network, GAN) 是一類神經網絡,通過輪流訓練判別器 (Discriminator) 和生成器 (Generator),令其相互對抗,來從復雜概率分布中采樣,例如生成圖片、文字、語音等。GAN 最初由 Ian Goodfellow 提出,原論文見 Generative Adversarial Networks

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover from the biased data the true state, which is the solution of the PDE. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a simple time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from biased data for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only 2\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

Aqueous solubility is a valuable yet challenging property to predict. Computing solubility using first-principles methods requires accounting for the competing effects of entropy and enthalpy, resulting in long computations for relatively poor accuracy. Data-driven approaches, such as deep learning, offer improved accuracy and computational efficiency but typically lack uncertainty quantification. Additionally, ease of use remains a concern for any computational technique, resulting in the sustained popularity of group-based contribution methods. In this work, we addressed these problems with a deep learning model with predictive uncertainty that runs on a static website (without a server). This approach moves computing needs onto the website visitor without requiring installation, removing the need to pay for and maintain servers. Our model achieves satisfactory results in solubility prediction. Furthermore, we demonstrate how to create molecular property prediction models that balance uncertainty and ease of use. The code is available at //github.com/ur-whitelab/mol.dev, and the model is usable at //mol.dev.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司
x$). Analysis of TAS detector data is complicated by the fact that the E 宁毅静平公主小说免费阅读,亚洲专区中文字幕专区,日本一卡二卡卡四卡精品,国产在线视频一区二区观看 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$_\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

相關內容

 生成對抗網絡 (Generative Adversarial Network, GAN) 是一類神經網絡,通過輪流訓練判別器 (Discriminator) 和生成器 (Generator),令其相互對抗,來從復雜概率分布中采樣,例如生成圖片、文字、語音等。GAN 最初由 Ian Goodfellow 提出,原論文見 Generative Adversarial Networks

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover from the biased data the true state, which is the solution of the PDE. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a simple time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from biased data for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only 2\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

Aqueous solubility is a valuable yet challenging property to predict. Computing solubility using first-principles methods requires accounting for the competing effects of entropy and enthalpy, resulting in long computations for relatively poor accuracy. Data-driven approaches, such as deep learning, offer improved accuracy and computational efficiency but typically lack uncertainty quantification. Additionally, ease of use remains a concern for any computational technique, resulting in the sustained popularity of group-based contribution methods. In this work, we addressed these problems with a deep learning model with predictive uncertainty that runs on a static website (without a server). This approach moves computing needs onto the website visitor without requiring installation, removing the need to pay for and maintain servers. Our model achieves satisfactory results in solubility prediction. Furthermore, we demonstrate how to create molecular property prediction models that balance uncertainty and ease of use. The code is available at //github.com/ur-whitelab/mol.dev, and the model is usable at //mol.dev.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司
x$ and E 宁毅静平公主小说免费阅读,亚洲专区中文字幕专区,日本一卡二卡卡四卡精品,国产在线视频一区二区观看 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$_\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

相關內容

 生成對抗網絡 (Generative Adversarial Network, GAN) 是一類神經網絡,通過輪流訓練判別器 (Discriminator) 和生成器 (Generator),令其相互對抗,來從復雜概率分布中采樣,例如生成圖片、文字、語音等。GAN 最初由 Ian Goodfellow 提出,原論文見 Generative Adversarial Networks

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover from the biased data the true state, which is the solution of the PDE. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a simple time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from biased data for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only 2\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

Aqueous solubility is a valuable yet challenging property to predict. Computing solubility using first-principles methods requires accounting for the competing effects of entropy and enthalpy, resulting in long computations for relatively poor accuracy. Data-driven approaches, such as deep learning, offer improved accuracy and computational efficiency but typically lack uncertainty quantification. Additionally, ease of use remains a concern for any computational technique, resulting in the sustained popularity of group-based contribution methods. In this work, we addressed these problems with a deep learning model with predictive uncertainty that runs on a static website (without a server). This approach moves computing needs onto the website visitor without requiring installation, removing the need to pay for and maintain servers. Our model achieves satisfactory results in solubility prediction. Furthermore, we demonstrate how to create molecular property prediction models that balance uncertainty and ease of use. The code is available at //github.com/ur-whitelab/mol.dev, and the model is usable at //mol.dev.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司
\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E 宁毅静平公主小说免费阅读,亚洲专区中文字幕专区,日本一卡二卡卡四卡精品,国产在线视频一区二区观看 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$_\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

相關內容

 生成對抗網絡 (Generative Adversarial Network, GAN) 是一類神經網絡,通過輪流訓練判別器 (Discriminator) 和生成器 (Generator),令其相互對抗,來從復雜概率分布中采樣,例如生成圖片、文字、語音等。GAN 最初由 Ian Goodfellow 提出,原論文見 Generative Adversarial Networks

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover from the biased data the true state, which is the solution of the PDE. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a simple time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from biased data for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only 2\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

Aqueous solubility is a valuable yet challenging property to predict. Computing solubility using first-principles methods requires accounting for the competing effects of entropy and enthalpy, resulting in long computations for relatively poor accuracy. Data-driven approaches, such as deep learning, offer improved accuracy and computational efficiency but typically lack uncertainty quantification. Additionally, ease of use remains a concern for any computational technique, resulting in the sustained popularity of group-based contribution methods. In this work, we addressed these problems with a deep learning model with predictive uncertainty that runs on a static website (without a server). This approach moves computing needs onto the website visitor without requiring installation, removing the need to pay for and maintain servers. Our model achieves satisfactory results in solubility prediction. Furthermore, we demonstrate how to create molecular property prediction models that balance uncertainty and ease of use. The code is available at //github.com/ur-whitelab/mol.dev, and the model is usable at //mol.dev.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司
x$ and E 宁毅静平公主小说免费阅读,亚洲专区中文字幕专区,日本一卡二卡卡四卡精品,国产在线视频一区二区观看 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$_\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

相關內容

 生成對抗網絡 (Generative Adversarial Network, GAN) 是一類神經網絡,通過輪流訓練判別器 (Discriminator) 和生成器 (Generator),令其相互對抗,來從復雜概率分布中采樣,例如生成圖片、文字、語音等。GAN 最初由 Ian Goodfellow 提出,原論文見 Generative Adversarial Networks

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover from the biased data the true state, which is the solution of the PDE. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a simple time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from biased data for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only 2\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

Aqueous solubility is a valuable yet challenging property to predict. Computing solubility using first-principles methods requires accounting for the competing effects of entropy and enthalpy, resulting in long computations for relatively poor accuracy. Data-driven approaches, such as deep learning, offer improved accuracy and computational efficiency but typically lack uncertainty quantification. Additionally, ease of use remains a concern for any computational technique, resulting in the sustained popularity of group-based contribution methods. In this work, we addressed these problems with a deep learning model with predictive uncertainty that runs on a static website (without a server). This approach moves computing needs onto the website visitor without requiring installation, removing the need to pay for and maintain servers. Our model achieves satisfactory results in solubility prediction. Furthermore, we demonstrate how to create molecular property prediction models that balance uncertainty and ease of use. The code is available at //github.com/ur-whitelab/mol.dev, and the model is usable at //mol.dev.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司
\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$_\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

相關內容

 生成對抗網絡 (Generative Adversarial Network, GAN) 是一類神經網絡,通過輪流訓練判別器 (Discriminator) 和生成器 (Generator),令其相互對抗,來從復雜概率分布中采樣,例如生成圖片、文字、語音等。GAN 最初由 Ian Goodfellow 提出,原論文見 Generative Adversarial Networks

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover from the biased data the true state, which is the solution of the PDE. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a simple time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from biased data for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only 2\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

Aqueous solubility is a valuable yet challenging property to predict. Computing solubility using first-principles methods requires accounting for the competing effects of entropy and enthalpy, resulting in long computations for relatively poor accuracy. Data-driven approaches, such as deep learning, offer improved accuracy and computational efficiency but typically lack uncertainty quantification. Additionally, ease of use remains a concern for any computational technique, resulting in the sustained popularity of group-based contribution methods. In this work, we addressed these problems with a deep learning model with predictive uncertainty that runs on a static website (without a server). This approach moves computing needs onto the website visitor without requiring installation, removing the need to pay for and maintain servers. Our model achieves satisfactory results in solubility prediction. Furthermore, we demonstrate how to create molecular property prediction models that balance uncertainty and ease of use. The code is available at //github.com/ur-whitelab/mol.dev, and the model is usable at //mol.dev.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司