This tutorial focuses on efficient methods to predictive monitoring (PM), the problem of detecting at runtime future violations of a given requirement from the current state of a system. While performing model checking at runtime would offer a precise solution to the PM problem, it is generally computationally expensive. To address this scalability issue, several lightweight approaches based on machine learning have recently been proposed. These approaches work by learning an approximate yet efficient surrogate (deep learning) model of the expensive model checker. A key challenge remains to ensure reliable predictions, especially in safety-critical applications. We review our recent work on predictive monitoring, one of the first to propose learning-based approximations for CPS verification of temporal logic specifications and the first in this context to apply conformal prediction (CP) for rigorous uncertainty quantification. These CP-based uncertainty estimators offer statistical guarantees regarding the generalization error of the learning model, and they can be used to determine unreliable predictions that should be rejected. In this tutorial, we present a general and comprehensive framework summarizing our approach to the predictive monitoring of CPSs, examining in detail several variants determined by three main dimensions: system dynamics (deterministic, non-deterministic, stochastic), state observability, and semantics of requirements' satisfaction (Boolean or quantitative).
Cloud radiative feedback impacts early tropical cyclone (TC) intensification, but limitations in existing diagnostic frameworks make them unsuitable for studying asymmetric or transient radiative heating. We propose a linear Variational Encoder-Decoder (VED) to learn the hidden relationship between radiation and the surface intensification of realistic simulated TCs. Limiting VED model inputs enables using its uncertainty to identify periods when radiation has more importance for intensification. A close examination of the extracted 3D radiative structures suggests that longwave radiative forcing from inner core deep convection and shallow clouds both contribute to intensification, with the deep convection having the most impact overall. We find that deep convection downwind of the shallow clouds is critical to the intensification of Haiyan. Our work demonstrates that machine learning can discover thermodynamic-kinematic relationships without relying on axisymmetric or deterministic assumptions, paving the way towards the objective discovery of processes leading to TC intensification in realistic conditions.
We study the problem of completing various visual document understanding (VDU) tasks, e.g., question answering and information extraction, on real-world documents through human-written instructions. To this end, we propose InstructDoc, the first large-scale collection of 30 publicly available VDU datasets, each with diverse instructions in a unified format, which covers a wide range of 12 tasks and includes open document types/formats. Furthermore, to enhance the generalization performance on VDU tasks, we design a new instruction-based document reading and understanding model, InstructDr, that connects document images, image encoders, and large language models (LLMs) through a trainable bridging module. Experiments demonstrate that InstructDr can effectively adapt to new VDU datasets, tasks, and domains via given instructions and outperforms existing multimodal LLMs and ChatGPT without specific training.
We propose policy gradient algorithms for robust infinite-horizon Markov decision processes (MDPs) with non-rectangular uncertainty sets, thereby addressing an open challenge in the robust MDP literature. Indeed, uncertainty sets that display statistical optimality properties and make optimal use of limited data often fail to be rectangular. Unfortunately, the corresponding robust MDPs cannot be solved with dynamic programming techniques and are in fact provably intractable. We first present a randomized projected Langevin dynamics algorithm that solves the robust policy evaluation problem to global optimality but is inefficient. We also propose a deterministic policy gradient method that is efficient but solves the robust policy evaluation problem only approximately, and we prove that the approximation error scales with a new measure of non-rectangularity of the uncertainty set. Finally, we describe an actor-critic algorithm that finds an $\epsilon$-optimal solution for the robust policy improvement problem in $\mathcal{O}(1/\epsilon^4)$ iterations. We thus present the first complete solution scheme for robust MDPs with non-rectangular uncertainty sets offering global optimality guarantees. Numerical experiments show that our algorithms compare favorably against state-of-the-art methods.
Traffic prediction, a critical component for intelligent transportation systems, endeavors to foresee future traffic at specific locations using historical data. Although existing traffic prediction models often emphasize developing complex neural network structures, their accuracy has not seen improvements accordingly. Recently, Large Language Models (LLMs) have shown outstanding capabilities in time series analysis. Differing from existing models, LLMs progress mainly through parameter expansion and extensive pre-training while maintaining their fundamental structures. In this paper, we propose a Spatial-Temporal Large Language Model (ST-LLM) for traffic prediction. Specifically, ST-LLM redefines the timesteps at each location as tokens and incorporates a spatial-temporal embedding module to learn the spatial location and global temporal representations of tokens. Then these representations are fused to provide each token with unified spatial and temporal information. Furthermore, we propose a novel partially frozen attention strategy of the LLM, which is designed to capture spatial-temporal dependencies for traffic prediction. Comprehensive experiments on real traffic datasets offer evidence that ST-LLM outperforms state-of-the-art models. Notably, the ST-LLM also exhibits robust performance in both few-shot and zero-shot prediction scenarios.
In stereo-matching knowledge distillation methods of the self-supervised monocular depth estimation, the stereo-matching network's knowledge is distilled into a monocular depth network through pseudo-depth maps. In these methods, the learning-based stereo-confidence network is generally utilized to identify errors in the pseudo-depth maps to prevent transferring the errors. However, the learning-based stereo-confidence networks should be trained with ground truth (GT), which is not feasible in a self-supervised setting. In this paper, we propose a method to identify and filter errors in the pseudo-depth map using multiple disparity maps by checking their consistency without the need for GT and a training process. Experimental results show that the proposed method outperforms the previous methods and works well on various configurations by filtering out erroneous areas where the stereo-matching is vulnerable, especially such as textureless regions, occlusion boundaries, and reflective surfaces.
We explore a stochastic contextual linear bandit problem where the agent observes a noisy, corrupted version of the true context through a noise channel with an unknown noise parameter. Our objective is to design an action policy that can approximate" that of an oracle, which has access to the reward model, the channel parameter, and the predictive distribution of the true context from the observed noisy context. In a Bayesian framework, we introduce a Thompson sampling algorithm for Gaussian bandits with Gaussian context noise. Adopting an information-theoretic analysis, we demonstrate the Bayesian regret of our algorithm concerning the oracle's action policy. We also extend this problem to a scenario where the agent observes the true context with some delay after receiving the reward and show that delayed true contexts lead to lower Bayesian regret. Finally, we empirically demonstrate the performance of the proposed algorithms against baselines.
Pseudorange errors are the root cause of localization inaccuracy in GPS. Previous data-driven methods regress and eliminate pseudorange errors using handcrafted intermediate labels. Unlike them, we propose an end-to-end GPS localization framework, E2E-PrNet, to train a neural network for pseudorange correction (PrNet) directly using the final task loss calculated with the ground truth of GPS receiver states. The gradients of the loss with respect to learnable parameters are backpropagated through a differentiable nonlinear least squares optimizer to PrNet. The feasibility is verified with GPS data collected by Android phones, showing that E2E-PrNet outperforms the state-of-the-art end-to-end GPS localization methods.
Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which leverages the rich linguistic knowledge and powerful reasoning ability of LLMs to improve recognition results. The latest work proposes a GER benchmark with HyPoradise dataset to learn the mapping from ASR N-best hypotheses to ground-truth transcription by efficient LLM finetuning, which shows great effectiveness but lacks specificity on noise-robust ASR. In this work, we extend the benchmark to noisy conditions and investigate if we can teach LLMs to perform denoising for GER just like what robust ASR do}, where one solution is introducing noise information as a conditioner into LLM. However, directly incorporating noise embeddings from audio encoder could harm the LLM tuning due to cross-modality gap. To this end, we propose to extract a language-space noise embedding from the N-best list to represent the noise conditions of source speech, which can promote the denoising process in GER. Furthermore, in order to enhance its representation ability of audio noise, we design a knowledge distillation (KD) approach via mutual information estimation to distill the real noise information in audio embeddings to our language embedding. Experiments on various latest LLMs demonstrate our approach achieves a new breakthrough with up to 53.9% correction improvement in terms of word error rate while with limited training data. Analysis shows that our language-space noise embedding can well represent the noise conditions of source speech, under which off-the-shelf LLMs show strong ability of language-space denoising.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.