We derive entropy bounds for the absolute convex hull of vectors $X= (x_1 , \ldots , x_p)\in \mathbb{R}^{n \times p} $ in $\mathbb{R}^n$ and apply this to the case where $X$ is the $d$-fold tensor matrix $$X = \underbrace{\Psi \otimes \cdots \otimes \Psi}_{d \ {\rm times} }\in \mathbb{R}^{m^d \times r^d },$$ with a given $\Psi = ( \psi_1 , \ldots , \psi_r ) \in \mathbb{R}^{m \times r} $, normalized to that $ \| \psi_j \|_2 \le 1$ for all $j \in \{1 , \ldots , r\}$. For $\epsilon >0$ we let ${\cal V} \subset \mathbb{R}^m$ be the linear space with smallest dimension $M ( \epsilon , \Psi)$ such that $ \max_{1 \le j \le r } \min_{v \in {\cal V} } \| \psi_j - v \|_2 \le \epsilon$. We call $M( \epsilon , \psi)$ the $\epsilon$-approximation of $\Psi$ and assume it is -- up to log terms -- polynomial in $\epsilon$. We show that the entropy of the absolute convex hull of the $d$-fold tensor matrix $X$ is up to log-terms of the same order as the entropy for the case $d=1$. The results are generalized to absolute convex hulls of tensors of functions in $L_2 (\mu)$ where $\mu$ is Lebesgue measure on $[0,1]$. As an application we consider the space of functions on $[0,1]^d$ with bounded $q$-th order Vitali total variation for a given $q \in \mathbb{N}$. As a by-product, we construct an orthonormal, piecewise polynomial, wavelet dictionary for functions that are well-approximated by piecewise polynomials.
We consider the cubic nonlinear Schr\"odinger equation with a spatially rough potential, a key equation in the mathematical setup for nonlinear Anderson localization. Our study comprises two main parts: new optimal results on the well-posedness analysis on the PDE level, and subsequently a new efficient numerical method, its convergence analysis and simulations that illustrate our analytical results. In the analysis part, our results focus on understanding how the regularity of the solution is influenced by the regularity of the potential, where we provide quantitative and explicit characterizations. Ill-posedness results are also established to demonstrate the sharpness of the obtained regularity characterizations and to indicate the minimum regularity required from the potential for the NLS to be solvable. Building upon the obtained regularity results, we design an appropriate numerical discretization for the model and establish its convergence with an optimal error bound. The numerical experiments in the end not only verify the theoretical regularity results, but also confirm the established convergence rate of the proposed scheme. Additionally, a comparison with other existing schemes is conducted to demonstrate the better accuracy of our new scheme in the case of a rough potential.
We study differentially private (DP) estimation of a rank-$r$ matrix $M \in \RR^{d_1\times d_2}$ under the trace regression model with Gaussian measurement matrices. Theoretically, the sensitivity of non-private spectral initialization is precisely characterized, and the differential-privacy-constrained minimax lower bound for estimating $M$ under the Schatten-$q$ norm is established. Methodologically, the paper introduces a computationally efficient algorithm for DP-initialization with a sample size of $n \geq \wt O (r^2 (d_1\vee d_2))$. Under certain regularity conditions, the DP-initialization falls within a local ball surrounding $M$. We also propose a differentially private algorithm for estimating $M$ based on Riemannian optimization (DP-RGrad), which achieves a near-optimal convergence rate with the DP-initialization and sample size of $n \geq \wt O(r (d_1 + d_2))$. Finally, the paper discusses the non-trivial gap between the minimax lower bound and the upper bound of low-rank matrix estimation under the trace regression model. It is shown that the estimator given by DP-RGrad attains the optimal convergence rate in a weaker notion of differential privacy. Our powerful technique for analyzing the sensitivity of initialization requires no eigengap condition between $r$ non-zero singular values.
We consider a class of symmetry hypothesis testing problems including testing isotropy on $\mathbb{R}^d$ and testing rotational symmetry on the hypersphere $\mathcal{S}^{d-1}$. For this class, we study the null and non-null behaviors of Sobolev tests, with emphasis on their consistency rates. Our main results show that: (i) Sobolev tests exhibit a detection threshold (see Bhattacharya, 2019, 2020) that does not only depend on the coefficients defining these tests; and (ii) tests with non-zero coefficients at odd (respectively, even) ranks only are blind to alternatives with angular functions whose $k$th-order derivatives at zero vanish for any $k$ odd (even). Our non-standard asymptotic results are illustrated with Monte Carlo exercises. A case study in astronomy applies the testing toolbox to evaluate the symmetry of orbits of long- and short-period comets.
We study the complexity of constructing an optimal parsing $\varphi$ of a string ${\bf s} = s_1 \dots s_n$ under the constraint that given a position $p$ in the original text, and the LZ76-like (Lempel Ziv 76) encoding of $T$ based on $\varphi$, it is possible to identify/decompress the character $s_p$ by performing at most $c$ accesses to the LZ encoding, for a given integer $c.$ We refer to such a parsing $\varphi$ as a $c$-bounded access LZ parsing or $c$-BLZ parsing of ${\bf s}.$ We show that for any constant $c$ the problem of computing the optimal $c$-BLZ parsing of a string, i.e., the one with the minimum number of phrases, is NP-hard and also APX hard, i.e., no PTAS can exist under the standard complexity assumption $P \neq NP.$ We also study the ratio between the sizes of an optimal $c$-BLZ parsing of a string ${\bf s}$ and an optimal LZ76 parsing of ${\bf s}$ (which can be greedily computed in polynomial time).
In this paper we consider the problem of estimating the $f$-moment ($\sum_{v\in [n]} (f(\mathbf{x}(v))-f(0))$) of a dynamic vector $\mathbf{x}\in \mathbb{G}^n$ over some abelian group $(\mathbb{G},+)$, where the $\|f\|_\infty$ norm is bounded. We propose a simple sketch and new estimation framework based on the \emph{Fourier transform} of $f$. I.e., we decompose $f$ into a linear combination of homomorphisms $f_1,f_2,\ldots$ from $(\mathbb{G},+)$ to $(\mathbb{C},\times)$, estimate the $f_k$-moment for each $f_k$, and synthesize them to obtain an estimate of the $f$-moment. Our estimators are asymptotically unbiased and have variance asymptotic to $\|\mathbf{x}\|_0^2 (\|f\|_\infty^2 m^{-1} + \|\hat{f}\|_1^2 m^{-2})$, where the size of the sketch is $O(m\log n\log|\mathbb{G}|)$ bits. When $\mathbb{G}=\mathbb{Z}$ this problem can also be solved using off-the-shelf $\ell_0$-samplers with space $O(m\log^2 n)$ bits, which does not obviously generalize to finite groups. As a concrete benchmark, we extend Ganguly, Garofalakis, and Rastogi's singleton-detector-based sampler to work over $\mathbb{G}$ using $O(m\log n\log|\mathbb{G}|\log(m\log n))$ bits. We give some experimental evidence that the Fourier-based estimation framework is significantly more accurate than sampling-based approaches at the same memory footprint.
We give an almost complete characterization of the hardness of $c$-coloring $\chi$-chromatic graphs with distributed algorithms, for a wide range of models of distributed computing. In particular, we show that these problems do not admit any distributed quantum advantage. To do that: 1) We give a new distributed algorithm that finds a $c$-coloring in $\chi$-chromatic graphs in $\tilde{\mathcal{O}}(n^{\frac{1}{\alpha}})$ rounds, with $\alpha = \bigl\lfloor\frac{c-1}{\chi - 1}\bigr\rfloor$. 2) We prove that any distributed algorithm for this problem requires $\Omega(n^{\frac{1}{\alpha}})$ rounds. Our upper bound holds in the classical, deterministic LOCAL model, while the near-matching lower bound holds in the non-signaling model. This model, introduced by Arfaoui and Fraigniaud in 2014, captures all models of distributed graph algorithms that obey physical causality; this includes not only classical deterministic LOCAL and randomized LOCAL but also quantum-LOCAL, even with a pre-shared quantum state. We also show that similar arguments can be used to prove that, e.g., 3-coloring 2-dimensional grids or $c$-coloring trees remain hard problems even for the non-signaling model, and in particular do not admit any quantum advantage. Our lower-bound arguments are purely graph-theoretic at heart; no background on quantum information theory is needed to establish the proofs.
Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.
A graph $G$ is well-covered if all maximal independent sets are of the same cardinality. Let $w:V(G) \longrightarrow\mathbb{R}$ be a weight function. Then $G$ is $w$-well-covered if all maximal independent sets are of the same weight. An edge $xy \in E(G)$ is relating if there exists an independent set $S$ such that both $S \cup \{x\}$ and $S \cup \{y\}$ are maximal independent sets in the graph. If $xy$ is relating then $w(x)=w(y)$ for every weight function $w$ such that $G$ is $w$-well-covered. Relating edges play an important role in investigating $w$-well-covered graphs. The decision problem whether an edge in a graph is relating is NP-complete. We prove that the problem remains NP-complete when the input is restricted to graphs without cycles of length $6$. This is an unexpected result because recognizing relating edges is known to be polynomially solvable for graphs without cycles of lengths $4$ and $6$, graphs without cycles of lengths $5$ and $6$, and graphs without cycles of lengths $6$ and $7$. A graph $G$ belongs to the class $W_2$ if every two pairwise disjoint independent sets in $G$ are included in two pairwise disjoint maximum independent sets. It is known that if $G$ belongs to the class $W_2$, then it is well-covered. A vertex $v \in V(G)$ is shedding if for every independent set $S \subseteq V(G)-N[v]$, there exists a vertex $u \in N(v)$ such that $S \cup \{u\}$ is independent. Shedding vertices play an important role in studying the class $W_2$. Recognizing shedding vertices is co-NP-complete, even when the input is restricted to triangle-free graphs. We prove that the problem is co-NP-complete for graphs without cycles of length $6$.
For a locally finite set, $A \subseteq \mathbb{R}^d$, the $k$-th Brillouin zone of $a \in A$ is the region of points $x \in \mathbb{R}^d$ for which $\|x-a\|$ is the $k$-th smallest among the Euclidean distances between $x$ and the points in $A$. If $A$ is a lattice, the $k$-th Brillouin zones of the points in $A$ are translates of each other, which tile space. Depending on the value of $k$, they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in $\mathbb{R}^2$, and the convergence of the maximum volume of a chamber to zero for the integer lattice.
For any positive integer $q\geq 2$ and any real number $\delta\in(0,1)$, let $\alpha_q(n,\delta n)$ denote the maximum size of a subset of $\mathbb{Z}_q^n$ with minimum Hamming distance at least $\delta n$, where $\mathbb{Z}_q=\{0,1,\dotsc,q-1\}$ and $n\in\mathbb{N}$. The asymptotic rate function is defined by $ R_q(\delta) = \limsup_{n\rightarrow\infty}\frac{1}{n}\log_q\alpha_q(n,\delta n).$ The famous $q$-ary asymptotic Gilbert-Varshamov bound, obtained in the 1950s, states that \[ R_q(\delta) \geq 1 - \delta\log_q(q-1)-\delta\log_q\frac{1}{\delta}-(1-\delta)\log_q\frac{1}{1-\delta} \stackrel{\mathrm{def}}{=}R_\mathrm{GV}(\delta,q) \] for all positive integers $q\geq 2$ and $0<\delta<1-q^{-1}$. In the case that $q$ is an even power of a prime with $q\geq 49$, the $q$-ary Gilbert-Varshamov bound was firstly improved by using algebraic geometry codes in the works of Tsfasman, Vladut, and Zink and of Ihara in the 1980s. These algebraic geometry codes have been modified to improve the $q$-ary Gilbert-Varshamov bound $R_\mathrm{GV}(\delta,q)$ at a specific tangent point $\delta=\delta_0\in (0,1)$ of the curve $R_\mathrm{GV}(\delta,q)$ for each given integer $q\geq 46$. However, the $q$-ary Gilbert-Varshamov bound $R_\mathrm{GV}(\delta,q)$ at $\delta=1/2$, i.e., $R_\mathrm{GV}(1/2,q)$, remains the largest known lower bound of $R_q(1/2)$ for infinitely many positive integers $q$ which is a generic prime and which is a generic non-prime-power integer. In this paper, by using codes from geometry of numbers introduced by Lenstra in the 1980s, we prove that the $q$-ary Gilbert-Varshamov bound $R_\mathrm{GV}(\delta,q)$ with $\delta\in(0,1)$ can be improved for all but finitely many positive integers $q$. It is shown that the growth defined by $\eta(\delta)= \liminf_{q\rightarrow\infty}\frac{1}{\log q}\log[1-\delta-R_q(\delta)]^{-1}$ for every $\delta\in(0,1)$ has actually a nontrivial lower bound.