While training large language models (LLMs) from scratch can generate models with distinct functionalities and strengths, it comes at significant costs and may result in redundant capabilities. Alternatively, a cost-effective and compelling approach is to merge existing pre-trained LLMs into a more potent model. However, due to the varying architectures of these LLMs, directly blending their weights is impractical. In this paper, we introduce the notion of knowledge fusion for LLMs, aimed at combining the capabilities of existing LLMs and transferring them into a single LLM. By leveraging the generative distributions of source LLMs, we externalize their collective knowledge and unique strengths, thereby potentially elevating the capabilities of the target model beyond those of any individual source LLM. We validate our approach using three popular LLMs with different architectures--Llama-2, MPT, and OpenLLaMA--across various benchmarks and tasks. Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation. Our code, model weights, and data are public at \url{//github.com/fanqiwan/FuseLLM}.
Existing techniques for training language models can be misaligned with the truth: if we train models with imitation learning, they may reproduce errors that humans make; if we train them to generate text that humans rate highly, they may output errors that human evaluators can't detect. We propose circumventing this issue by directly finding latent knowledge inside the internal activations of a language model in a purely unsupervised way. Specifically, we introduce a method for accurately answering yes-no questions given only unlabeled model activations. It works by finding a direction in activation space that satisfies logical consistency properties, such as that a statement and its negation have opposite truth values. We show that despite using no supervision and no model outputs, our method can recover diverse knowledge represented in large language models: across 6 models and 10 question-answering datasets, it outperforms zero-shot accuracy by 4\% on average. We also find that it cuts prompt sensitivity in half and continues to maintain high accuracy even when models are prompted to generate incorrect answers. Our results provide an initial step toward discovering what language models know, distinct from what they say, even when we don't have access to explicit ground truth labels.
We propose GNNInfer, the first automatic property inference technique for GNNs. To tackle the challenge of varying input structures in GNNs, GNNInfer first identifies a set of representative influential structures that contribute significantly towards the prediction of a GNN. Using these structures, GNNInfer converts each pair of an influential structure and the GNN to their equivalent FNN and then leverages existing property inference techniques to effectively capture properties of the GNN that are specific to the influential structures. GNNINfer then generalizes the captured properties to any input graphs that contain the influential structures. Finally, GNNInfer improves the correctness of the inferred properties by building a model (either a decision tree or linear regression) that estimates the deviation of GNN output from the inferred properties given full input graphs. The learned model helps GNNInfer extend the inferred properties with constraints to the input and output of the GNN, obtaining stronger properties that hold on full input graphs. Our experiments show that GNNInfer is effective in inferring likely properties of popular real-world GNNs, and more importantly, these inferred properties help effectively defend against GNNs' backdoor attacks. In particular, out of the 13 ground truth properties, GNNInfer re-discovered 8 correct properties and discovered likely correct properties that approximate the remaining 5 ground truth properties. Using properties inferred by GNNInfer to defend against the state-of-the-art backdoor attack technique on GNNs, namely UGBA, experiments show that GNNInfer's defense success rate is up to 30 times better than existing baselines.
We explore a knowledge sanitization approach to mitigate the privacy concerns associated with large language models (LLMs). LLMs trained on a large corpus of Web data can memorize and potentially reveal sensitive or confidential information, raising critical security concerns. Our technique efficiently fine-tunes these models using the Low-Rank Adaptation (LoRA) method, prompting them to generate harmless responses such as ``I don't know'' when queried about specific information. Experimental results in a closed-book question-answering task show that our straightforward method not only minimizes particular knowledge leakage but also preserves the overall performance of LLMs. These two advantages strengthen the defense against extraction attacks and reduces the emission of harmful content such as hallucinations.
Neural operator architectures employ neural networks to approximate operators mapping between Banach spaces of functions; they may be used to accelerate model evaluations via emulation, or to discover models from data. Consequently, the methodology has received increasing attention over recent years, giving rise to the rapidly growing field of operator learning. The first contribution of this paper is to prove that for general classes of operators which are characterized only by their $C^r$- or Lipschitz-regularity, operator learning suffers from a ``curse of parametric complexity'', which is an infinite-dimensional analogue of the well-known curse of dimensionality encountered in high-dimensional approximation problems. The result is applicable to a wide variety of existing neural operators, including PCA-Net, DeepONet and the FNO. The second contribution of the paper is to prove that this general curse can be overcome for solution operators defined by the Hamilton-Jacobi equation; this is achieved by leveraging additional structure in the underlying solution operator, going beyond regularity. To this end, a novel neural operator architecture is introduced, termed HJ-Net, which explicitly takes into account characteristic information of the underlying Hamiltonian system. Error and complexity estimates are derived for HJ-Net which show that this architecture can provably beat the curse of parametric complexity related to the infinite-dimensional input and output function spaces.
Over the last two decades, technology use in language learning and teaching has significantly advanced and is now referred to as Computer-Assisted Language Learning (CALL). Recently, the integration of Artificial Intelligence (AI) into CALL has brought about a significant shift in the traditional approach to language education both inside and outside the classroom. In line with this book's scope, I explore the advantages and disadvantages of AI-mediated communication in language education. I begin with a brief review of AI in education. I then introduce the ICALL and give a critical appraisal of the potential of AI-powered automatic speech recognition (ASR), Machine Translation (MT), Intelligent Tutoring Systems (ITSs), AI-powered chatbots, and Extended Reality (XR). In conclusion, I argue that it is crucial for language teachers to engage in CALL teacher education and professional development to keep up with the ever-evolving technology landscape and improve their teaching effectiveness.
Language models as a service (LMaaS) enable users to accomplish tasks without requiring specialized knowledge, simply by paying a service provider. However, numerous providers offer massive large language model (LLM) services with variations in latency, performance, and pricing. Consequently, constructing the cost-saving LLM services invocation strategy with low-latency and high-performance responses that meet specific task demands becomes a pressing challenge. This paper provides a comprehensive overview of the LLM services invocation methods. Technically, we give a formal definition of the problem of constructing effective invocation strategy in LMaaS and present the LLM services invocation framework. The framework classifies existing methods into four different components, including input abstract, semantic cache, solution design, and output enhancement, which can be freely combined with each other. Finally, we emphasize the open challenges that have not yet been well addressed in this task and shed light on future research.
Dense subgraph extraction is a fundamental problem in graph analysis and data mining, aimed at identifying cohesive and densely connected substructures within a given graph. It plays a crucial role in various domains, including social network analysis, biological network analysis, recommendation systems, and community detection. However, extracting a subgraph with the highest node similarity is a lack of exploration. To address this problem, we studied the Member Selection Problem and extended it with a dynamic constraint variant. By incorporating dynamic constraints, our algorithm can adapt to changing conditions or requirements, allowing for more flexible and personalized subgraph extraction. This approach enables the algorithm to provide tailored solutions that meet specific needs, even in scenarios where constraints may vary over time. We also provide the theoretical analysis to show that our algorithm is 1/3-approximation. Eventually, the experiments show that our algorithm is effective and efficient in tackling the member selection problem with dynamic constraints.
While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.