亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses intra-client and inter-client covariate shifts in federated learning (FL) with a focus on the overall generalization performance. To handle covariate shifts, we formulate a new global model training paradigm and propose Federated Importance-Weighted Empirical Risk Minimization (FTW-ERM) along with improving density ratio matching methods without requiring perfect knowledge of the supremum over true ratios. We also propose the communication-efficient variant FITW-ERM with the same level of privacy guarantees as those of classical ERM in FL. We theoretically show that FTW-ERM achieves smaller generalization error than classical ERM under certain settings. Experimental results demonstrate the superiority of FTW-ERM over existing FL baselines in challenging imbalanced federated settings in terms of data distribution shifts across clients.

相關內容

Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data. However, training and deploying large models for broader applications is challenging in resource-constrained environments. Fortunately, Split Federated Learning (SFL) offers an excellent solution by alleviating the computation and communication burden on the clients SFL often assumes labeled data for local training on clients, however, it is not the case in practice.Prior works have adopted semi-supervised techniques for leveraging unlabeled data in FL, but data non-IIDness poses another challenge to ensure training efficiency. Herein, we propose Pseudo-Clustering Semi-SFL, a novel system for training models in scenarios where labeled data reside on the server. By introducing Clustering Regularization, model performance under data non-IIDness can be improved. Besides, our theoretical and experimental investigations into model convergence reveal that the inconsistent training processes on labeled and unlabeled data impact the effectiveness of clustering regularization. Upon this, we develop a control algorithm for global updating frequency adaptation, which dynamically adjusts the number of supervised training iterations to mitigate the training inconsistency. Extensive experiments on benchmark models and datasets show that our system provides a 3.3x speed-up in training time and reduces the communication cost by about 80.1% while reaching the target accuracy, and achieves up to 6.9% improvement in accuracy under non-IID scenarios compared to the state-of-the-art.

A key challenge in many modern data analysis tasks is that user data are heterogeneous. Different users may possess vastly different numbers of data points. More importantly, it cannot be assumed that all users sample from the same underlying distribution. This is true, for example in language data, where different speech styles result in data heterogeneity. In this work we propose a simple model of heterogeneous user data that allows user data to differ in both distribution and quantity of data, and provide a method for estimating the population-level mean while preserving user-level differential privacy. We demonstrate asymptotic optimality of our estimator and also prove general lower bounds on the error achievable in the setting we introduce.

Obtaining rigorous statistical guarantees for generalization under distribution shift remains an open and active research area. We study a setting we call combinatorial distribution shift, where (a) under the test- and training-distributions, the labels $z$ are determined by pairs of features $(x,y)$, (b) the training distribution has coverage of certain marginal distributions over $x$ and $y$ separately, but (c) the test distribution involves examples from a product distribution over $(x,y)$ that is {not} covered by the training distribution. Focusing on the special case where the labels are given by bilinear embeddings into a Hilbert space $H$: $\mathbb{E}[z \mid x,y ]=\langle f_{\star}(x),g_{\star}(y)\rangle_{{H}}$, we aim to extrapolate to a test distribution domain that is $not$ covered in training, i.e., achieving bilinear combinatorial extrapolation. Our setting generalizes a special case of matrix completion from missing-not-at-random data, for which all existing results require the ground-truth matrices to be either exactly low-rank, or to exhibit very sharp spectral cutoffs. In this work, we develop a series of theoretical results that enable bilinear combinatorial extrapolation under gradual spectral decay as observed in typical high-dimensional data, including novel algorithms, generalization guarantees, and linear-algebraic results. A key tool is a novel perturbation bound for the rank-$k$ singular value decomposition approximations between two matrices that depends on the relative spectral gap rather than the absolute spectral gap, a result that may be of broader independent interest.

Adversarial attacks are a major concern in security-centered applications, where malicious actors continuously try to mislead Machine Learning (ML) models into wrongly classifying fraudulent activity as legitimate, whereas system maintainers try to stop them. Adversarially training ML models that are robust against such attacks can prevent business losses and reduce the work load of system maintainers. In such applications data is often tabular and the space available for attackers to manipulate undergoes complex feature engineering transformations, to provide useful signals for model training, to a space attackers cannot access. Thus, we propose a new form of adversarial training where attacks are propagated between the two spaces in the training loop. We then test this method empirically on a real world dataset in the domain of credit card fraud detection. We show that our method can prevent about 30% performance drops under moderate attacks and is essential under very aggressive attacks, with a trade-off loss in performance under no attacks smaller than 7%.

The majority of fault-tolerant distributed algorithms are designed assuming a nominal corruption model, in which at most a fraction $f_n$ of parties can be corrupted by the adversary. However, due to the infamous Sybil attack, nominal models are not sufficient to express the trust assumptions in open (i.e., permissionless) settings. Instead, permissionless systems typically operate in a weighted model, where each participant is associated with a weight and the adversary can corrupt a set of parties holding at most a fraction $f_w$ of total weight. In this paper, we suggest a simple way to transform a large class of protocols designed for the nominal model into the weighted model. To this end, we formalize and solve three novel optimization problems, which we collectively call the weight reduction problems, that allow us to map large real weights into small integer weights while preserving the properties necessary for the correctness of the protocols. In all cases, we manage to keep the sum of the integer weights to be at most linear in the number of parties, resulting in extremely efficient protocols for the weighted model. Moreover, we demonstrate that, on weight distributions that emerge in practice, the sum of the integer weights tends to be far from the theoretical worst-case and, often even smaller than the number of participants. While, for some protocols, our transformation requires an arbitrarily small reduction in resilience (i.e., $f_w = f_n - \epsilon$), surprisingly, for many important problems we manage to obtain weighted solutions with the same resilience ($f_w = f_n$) as nominal ones. Notable examples include asynchronous consensus, verifiable secret sharing, erasure-coded distributed storage and broadcast protocols.

Federated Learning (FL) facilitates distributed model development to aggregate multiple confidential data sources. The information transfer among clients can be compromised by distributional differences, i.e., by non-i.i.d. data. A particularly challenging scenario is the federated model adaptation to a target client without access to annotated data. We propose Federated Adversarial Cross Training (FACT), which uses the implicit domain differences between source clients to identify domain shifts in the target domain. In each round of FL, FACT cross initializes a pair of source clients to generate domain specialized representations which are then used as a direct adversary to learn a domain invariant data representation. We empirically show that FACT outperforms state-of-the-art federated, non-federated and source-free domain adaptation models on three popular multi-source-single-target benchmarks, and state-of-the-art Unsupervised Domain Adaptation (UDA) models on single-source-single-target experiments. We further study FACT's behavior with respect to communication restrictions and the number of participating clients.

The Bregman-Kaczmarz method is an iterative method which can solve strongly convex problems with linear constraints and uses only one or a selected number of rows of the system matrix in each iteration, thereby making it amenable for large-scale systems. To speed up convergence, we investigate acceleration by heavy ball momentum in the so-called dual update. Heavy ball acceleration of the Kaczmarz method with constant parameters has turned out to be difficult to analyze, in particular no accelerated convergence for the L2-error of the iterates has been proven to the best of our knowledge. Here we propose a way to adaptively choose the momentum parameter by a minimal-error principle similar to a recently proposed method for the standard randomized Kaczmarz method. The momentum parameter can be chosen to exactly minimize the error in the next iterate or to minimize a relaxed version of the minimal error principle. The former choice leads to a theoretically optimal step while the latter is cheaper to compute. We prove improved convergence results compared to the non-accelerated method. Numerical experiments show that the proposed methods can accelerate convergence in practice, also for matrices which arise from applications such as computational tomography.

Quantile regression is increasingly encountered in modern big data applications due to its robustness and flexibility. We consider the scenario of learning the conditional quantiles of a specific target population when the available data may go beyond the target and be supplemented from other sources that possibly share similarities with the target. A crucial question is how to properly distinguish and utilize useful information from other sources to improve the quantile estimation and inference at the target. We develop transfer learning methods for high-dimensional quantile regression by detecting informative sources whose models are similar to the target and utilizing them to improve the target model. We show that under reasonable conditions, the detection of the informative sources based on sample splitting is consistent. Compared to the naive estimator with only the target data, the transfer learning estimator achieves a much lower error rate as a function of the sample sizes, the signal-to-noise ratios, and the similarity measures among the target and the source models. Extensive simulation studies demonstrate the superiority of our proposed approach. We apply our methods to tackle the problem of detecting hard-landing risk for flight safety and show the benefits and insights gained from transfer learning of three different types of airplanes: Boeing 737, Airbus A320, and Airbus A380.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

北京阿比特科技有限公司