亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider minimum time multicasting problems in directed and undirected graphs: given a root node and a subset of $t$ terminal nodes, multicasting seeks to find the minimum number of rounds within which all terminals can be informed with a message originating at the root. In each round, the telephone model we study allows the information to move via a matching from the informed nodes to the uninformed nodes. Since minimum time multicasting in digraphs is poorly understood compared to the undirected variant, we study an intermediate problem in undirected graphs that specifies a target $k < t$, and requires the only $k$ of the terminals be informed in the minimum number of rounds. For this problem, we improve implications of prior results and obtain an $\tilde{O}(t^{1/3})$ multiplicative approximation. For the directed version, we obtain an {\em additive} $\tilde{O}(k^{1/2})$ approximation algorithm (with a poly-logarithmic multiplicative factor). Our algorithms are based on reductions to the related problems of finding $k$-trees of minimum poise (sum of maximum degree and diameter) and applying a combination of greedy network decomposition techniques and set covering under partition matroid constraints.

相關內容

Consider the communication-constrained estimation of discrete distributions under $\ell^p$ losses, where each distributed terminal holds multiple independent samples and uses limited number of bits to describe the samples. We obtain the minimax optimal rates of the problem in most parameter regimes. An elbow effect of the optimal rates at $p=2$ is clearly identified. To show the optimal rates, we first design estimation protocols to achieve them. The key ingredient of these protocols is to introduce adaptive refinement mechanisms, which first generate rough estimate by partial information and then establish refined estimate in subsequent steps guided by the rough estimate. The protocols leverage successive refinement, sample compression, thresholding and random hashing methods to achieve the optimal rates in different parameter regimes. The optimality of the protocols is shown by deriving compatible minimax lower bounds.

Implicit surface representations such as the signed distance function (SDF) have emerged as a promising approach for image-based surface reconstruction. However, existing optimization methods assume solid surfaces and are therefore unable to properly reconstruct semi-transparent surfaces and thin structures, which also exhibit low opacity due to the blending effect with the background. While neural radiance field (NeRF) based methods can model semi-transparency and achieve photo-realistic quality in synthesized novel views, their volumetric geometry representation tightly couples geometry and opacity, and therefore cannot be easily converted into surfaces without introducing artifacts. We present $\alpha$Surf, a novel surface representation with decoupled geometry and opacity for the reconstruction of semi-transparent and thin surfaces where the colors mix. Ray-surface intersections on our representation can be found in closed-form via analytical solutions of cubic polynomials, avoiding Monte-Carlo sampling and is fully differentiable by construction. Our qualitative and quantitative evaluations show that our approach can accurately reconstruct surfaces with semi-transparent and thin parts with fewer artifacts, achieving better reconstruction quality than state-of-the-art SDF and NeRF methods. Website: //alphasurf.netlify.app/

While grasp detection is an important part of any robotic manipulation pipeline, reliable and accurate grasp detection in $SE(3)$ remains a research challenge. Many robotics applications in unstructured environments such as the home or warehouse would benefit a lot from better grasp performance. This paper proposes a novel framework for detecting $SE(3)$ grasp poses based on point cloud input. Our main contribution is to propose an $SE(3)$-equivariant model that maps each point in the cloud to a continuous grasp quality function over the 2-sphere $S^2$ using spherical harmonic basis functions. Compared with reasoning about a finite set of samples, this formulation improves the accuracy and efficiency of our model when a large number of samples would otherwise be needed. In order to accomplish this, we propose a novel variation on EquiFormerV2 that leverages a UNet-style encoder-decoder architecture to enlarge the number of points the model can handle. Our resulting method, which we name $\textit{OrbitGrasp}$, significantly outperforms baselines in both simulation and physical experiments.

We consider a novel algorithm, for the completion of partially observed low-rank matrices in a structured setting where each entry can be chosen from a finite discrete alphabet set, such as in common recommender systems. The proposed low-rank matrix completion (MC) method is an improved variation of state-of-the-art (SotA) discrete aware matrix completion method which we previously proposed, in which discreteness is enforced by an $\ell_0$-norm regularizer, not by replaced with the $\ell_1$-norm, but instead approximated by a continuous and differentiable function normalized via fractional programming (FP) under a proximal gradient (PG) framework. Simulation results demonstrate the superior performance of the new method compared to the SotA techniques as well as the earlier $\ell_1$-norm-based discrete-aware matrix completion approach.

The advent and proliferation of large multi-modal models (LMMs) have introduced a new paradigm to video-related computer vision fields, including training and inference methods based on visual question answering (VQA). These methods enable models to handle multiple downstream tasks robustly. Video Quality Assessment (VQA), a classic field in low-level visual quality evaluation, originally focused on quantitative video quality scoring. However, driven by advances in LMMs, it is now evolving towards more comprehensive visual quality understanding tasks. Visual question answering has significantly improved low-level visual evaluation within the image domain recently. However, related work is almost nonexistent in the video domain, leaving substantial room for improvement. To address this gap, we introduce the VQA2 Instruction Dataset the first visual question answering instruction dataset entirely focuses on video quality assessment, and based on it, we propose the VQA2 series models The VQA2 Instruction Dataset consists of three stages and covers various video types, containing 157,735 instruction question-answer pairs, including both manually annotated and synthetic data. We conduct extensive experiments on both video quality scoring and video quality understanding tasks. Results demonstrate that the VQA2 series models achieve state-of-the-art (SOTA) performance in quality scoring tasks, and their performance in visual quality question answering surpasses the renowned GPT-4o. Additionally, our final model, the VQA2-Assistant, performs well across both scoring and question-answering tasks, validating its versatility.

Community detection in graphs identifies groups of nodes with denser connections within the groups than between them, and while existing studies often focus on optimizing detection performance, memory constraints become critical when processing large graphs on shared-memory systems. We recently proposed efficient implementations of the Louvain, Leiden, and Label Propagation Algorithms (LPA) for community detection. However, these incur significant memory overhead from the use of collision-free per-thread hashtables. To address this, we introduce memory-efficient alternatives using weighted Misra-Gries (MG) sketches, which replace the per-thread hashtables, and reduce memory demands in Louvain, Leiden, and LPA implementations - while incurring only a minor quality drop (up to 1%) and moderate runtime penalties. We believe that these approaches, though slightly slower, are well-suited for parallel processing and could outperform current memory-intensive techniques on systems with many threads.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

Learning node embeddings that capture a node's position within the broader graph structure is crucial for many prediction tasks on graphs. However, existing Graph Neural Network (GNN) architectures have limited power in capturing the position/location of a given node with respect to all other nodes of the graph. Here we propose Position-aware Graph Neural Networks (P-GNNs), a new class of GNNs for computing position-aware node embeddings. P-GNN first samples sets of anchor nodes, computes the distance of a given target node to each anchor-set,and then learns a non-linear distance-weighted aggregation scheme over the anchor-sets. This way P-GNNs can capture positions/locations of nodes with respect to the anchor nodes. P-GNNs have several advantages: they are inductive, scalable,and can incorporate node feature information. We apply P-GNNs to multiple prediction tasks including link prediction and community detection. We show that P-GNNs consistently outperform state of the art GNNs, with up to 66% improvement in terms of the ROC AUC score.

Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.

北京阿比特科技有限公司