亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present LLoVi, a language-based framework for long-range video question-answering (LVQA). Unlike prior long-range video understanding methods, which are often costly and require specialized long-range video modeling design (e.g., memory queues, state-space layers, etc.), our approach uses a frame/clip-level visual captioner (e.g., BLIP2, LaViLa, LLaVA) coupled with a Large Language Model (GPT-3.5, GPT-4) leading to a simple yet surprisingly effective LVQA framework. Specifically, we decompose short and long-range modeling aspects of LVQA into two stages. First, we use a short-term visual captioner to generate textual descriptions of short video clips (0.5-8s in length) densely sampled from a long input video. Afterward, an LLM aggregates the densely extracted short-term captions to perform long-range temporal reasoning needed to understand the whole video and answer a question. To analyze what makes our simple framework so effective, we thoroughly evaluate various components of our system. Our empirical analysis reveals that the choice of the visual captioner and LLM is critical for good LVQA performance. Furthermore, we show that a specialized prompt that asks the LLM first to summarize the noisy short-term visual captions and then answer a given input question leads to a significant LVQA performance boost. On EgoSchema, which is best known as a very long-form video question-answering benchmark, our method achieves 50.3% accuracy, outperforming the previous best-performing approach by 18.1% (absolute gain). In addition, our approach outperforms the previous state-of-the-art by 4.1% and 3.1% on NeXT-QA and IntentQA. We also extend LLoVi to grounded LVQA and show that it outperforms all prior methods on the NeXT-GQA dataset. We will release our code at //github.com/CeeZh/LLoVi.

相關內容

大語(yu)(yu)言(yan)模型是基于海量文本(ben)數(shu)據訓練(lian)的(de)(de)(de)深度學習模型。它(ta)不(bu)僅能(neng)夠(gou)(gou)生成自(zi)然語(yu)(yu)言(yan)文本(ben),還能(neng)夠(gou)(gou)深入理(li)解文本(ben)含義,處理(li)各種(zhong)自(zi)然語(yu)(yu)言(yan)任務(wu),如文本(ben)摘要、問(wen)答、翻譯等。2023年,大語(yu)(yu)言(yan)模型及其在(zai)(zai)人(ren)工(gong)智能(neng)領域的(de)(de)(de)應(ying)(ying)用已成為(wei)全球科技研究的(de)(de)(de)熱(re)點,其在(zai)(zai)規(gui)模上(shang)的(de)(de)(de)增長尤為(wei)引人(ren)注目,參數(shu)量已從最初的(de)(de)(de)十幾億(yi)躍升到如今的(de)(de)(de)一萬(wan)億(yi)。參數(shu)量的(de)(de)(de)提升使得模型能(neng)夠(gou)(gou)更加精細地捕捉人(ren)類(lei)(lei)語(yu)(yu)言(yan)微妙(miao)之處,更加深入地理(li)解人(ren)類(lei)(lei)語(yu)(yu)言(yan)的(de)(de)(de)復雜(za)(za)性。在(zai)(zai)過去的(de)(de)(de)一年里(li),大語(yu)(yu)言(yan)模型在(zai)(zai)吸納新知識、分(fen)解復雜(za)(za)任務(wu)以及圖文對齊等多方面都有(you)顯(xian)著(zhu)(zhu)提升。隨著(zhu)(zhu)技術的(de)(de)(de)不(bu)斷成熟,它(ta)將不(bu)斷拓展其應(ying)(ying)用范圍(wei),為(wei)人(ren)類(lei)(lei)提供更加智能(neng)化(hua)(hua)和個性化(hua)(hua)的(de)(de)(de)服務(wu),進一步改(gai)善人(ren)們的(de)(de)(de)生活和生產方式。

Several applications in time series forecasting require predicting multiple steps ahead. Despite the vast amount of literature in the topic, both classical and recent deep learning based approaches have mostly focused on minimising performance averaged over the predicted window. We observe that this can lead to disparate distributions of errors across forecasting steps, especially for recent transformer architectures trained on popular forecasting benchmarks. That is, optimising performance on average can lead to undesirably large errors at specific time-steps. In this work, we present a Constrained Learning approach for long-term time series forecasting that aims to find the best model in terms of average performance that respects a user-defined upper bound on the loss at each time-step. We call our approach loss shaping constraints because it imposes constraints on the loss at each time step, and leverage recent duality results to show that despite its non-convexity, the resulting problem has a bounded duality gap. We propose a practical Primal-Dual algorithm to tackle it, and demonstrate that the proposed approach exhibits competitive average performance in time series forecasting benchmarks, while shaping the distribution of errors across the predicted window.

Facial video inpainting plays a crucial role in a wide range of applications, including but not limited to the removal of obstructions in video conferencing and telemedicine, enhancement of facial expression analysis, privacy protection, integration of graphical overlays, and virtual makeup. This domain presents serious challenges due to the intricate nature of facial features and the inherent human familiarity with faces, heightening the need for accurate and persuasive completions. In addressing challenges specifically related to occlusion removal in this context, our focus is on the progressive task of generating complete images from facial data covered by masks, ensuring both spatial and temporal coherence. Our study introduces a network designed for expression-based video inpainting, employing generative adversarial networks (GANs) to handle static and moving occlusions across all frames. By utilizing facial landmarks and an occlusion-free reference image, our model maintains the user's identity consistently across frames. We further enhance emotional preservation through a customized facial expression recognition (FER) loss function, ensuring detailed inpainted outputs. Our proposed framework exhibits proficiency in eliminating occlusions from facial videos in an adaptive form, whether appearing static or dynamic on the frames, while providing realistic and coherent results.

Spear-phishing attacks present a significant security challenge, with large language models (LLMs) escalating the threat by generating convincing emails and facilitating target reconnaissance. To address this, we propose a detection approach based on a novel document vectorization method that utilizes an ensemble of LLMs to create representation vectors. By prompting LLMs to reason and respond to human-crafted questions, we quantify the presence of common persuasion principles in the email's content, producing prompted contextual document vectors for a downstream supervised machine learning model. We evaluate our method using a unique dataset generated by a proprietary system that automates target reconnaissance and spear-phishing email creation. Our method achieves a 91% F1 score in identifying LLM-generated spear-phishing emails, with the training set comprising only traditional phishing and benign emails. Key contributions include an innovative document vectorization method utilizing LLM reasoning, a publicly available dataset of high-quality spear-phishing emails, and the demonstrated effectiveness of our method in detecting such emails. This methodology can be utilized for various document classification tasks, particularly in adversarial problem domains.

This study employs a uniform rectangular array (URA) sub-connected hybrid beamforming (SC-HBF) architecture to provide a novel self-interference (SI) suppression scheme in a full-duplex (FD) massive multiple-input multiple-output (mMIMO) system. Our primary objective is to mitigate the strong SI through the design of RF beamforming stages for uplink and downlink transmissions that utilize the spatial degrees of freedom provided due to the use of large array structures. We propose a non-constant modulus RF beamforming (NCM-BF-SIS) scheme that incorporates the gain controllers for both transmit (Tx) and receive (Rx) RF beamforming stages and optimizes the uplink and downlink beam directions jointly with gain controller coefficients. To solve this challenging non-convex optimization problem, we propose a swarm intelligence-based algorithmic solution that finds the optimal beam perturbations while also adjusting the Tx/Rx gain controllers to alleviate SI subject to the directivity degradation constraints for the beams. The data-driven analysis based on the measured SI channel in an anechoic chamber shows that the proposed NCM-BF-SIS scheme can suppress SI by around 80 dB in FD mMIMO systems.

We propose a method for generating spurious features by leveraging large-scale text-to-image diffusion models. Although the previous work detects spurious features in a large-scale dataset like ImageNet and introduces Spurious ImageNet, we found that not all spurious images are spurious across different classifiers. Although spurious images help measure the reliance of a classifier, filtering many images from the Internet to find more spurious features is time-consuming. To this end, we utilize an existing approach of personalizing large-scale text-to-image diffusion models with available discovered spurious images and propose a new spurious feature similarity loss based on neural features of an adversarially robust model. Precisely, we fine-tune Stable Diffusion with several reference images from Spurious ImageNet with a modified objective incorporating the proposed spurious-feature similarity loss. Experiment results show that our method can generate spurious images that are consistently spurious across different classifiers. Moreover, the generated spurious images are visually similar to reference images from Spurious ImageNet.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.

北京阿比特科技有限公司