亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, multimodal recommendations (MMR) have gained increasing attention for alleviating the data sparsity problem of traditional recommender systems by incorporating modality-based representations. Although MMR exhibit notable improvement in recommendation accuracy, we empirically validate that an increase in the quantity or variety of modalities leads to a higher degree of users' sensitive information leakage due to entangled causal relationships, risking fair representation learning. On the other hand, existing fair representation learning approaches are mostly based on the assumption that sensitive information is solely leaked from users' interaction data and do not explicitly model the causal relationships introduced by multimodal data, which limits their applicability in multimodal scenarios. Particularly, we disentangle biased and filtered modal embeddings inspired by causal inference techniques, enabling the mining of modality-based unfair and fair user-user relations, thereby enhancing the fairness and informativeness of user representations. By addressing the causal effects of sensitive attributes on user preferences, our approach aims to achieve counterfactual fairness in multimodal recommendations. Experiments on two public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at //github.com/WeixinChen98/FMMRec.

相關內容

This research presents FDASynthesis, a novel algorithm designed to generate synthetic GPS trajectory data while preserving privacy. After pre-processing the input GPS data, human mobility traces are modeled as multidimensional curves using Functional Data Analysis (FDA). Then, the synthesis process identifies the K-nearest trajectories and averages their Square-Root Velocity Functions (SRVFs) to generate synthetic data. This results in synthetic trajectories that maintain the utility of the original data while ensuring privacy. Although applied for human mobility research, FDASynthesis is highly adaptable to different types of functional data, offering a scalable solution in various application domains.

In semi-supervised semantic segmentation (SSS), weak-to-strong consistency regularization techniques are widely utilized in recent works, typically combined with input-level and feature-level perturbations. However, the integration between weak-to-strong consistency regularization and network perturbation has been relatively rare. We note several problems with existing network perturbations in SSS that may contribute to this phenomenon. By revisiting network perturbations, we introduce a new approach for network perturbation to expand the existing weak-to-strong consistency regularization for unlabeled data. Additionally, we present a volatile learning process for labeled data, which is uncommon in existing research. Building upon previous work that includes input-level and feature-level perturbations, we present MLPMatch (Multi-Level-Perturbation Match), an easy-to-implement and efficient framework for semi-supervised semantic segmentation. MLPMatch has been validated on the Pascal VOC and Cityscapes datasets, achieving state-of-the-art performance. Code is available from //github.com/LlistenL/MLPMatch.

Sensing-assisted communication is critical to enhance the system efficiency in integrated sensing and communication (ISAC) systems. However, most existing literature focuses on large-scale channel sensing, without considering the impacts of small-scale channel aging. In this paper, we investigate a dual-scale channel estimation framework for sensing-assisted communication, where both large-scale channel sensing and small-scale channel aging are considered. By modeling the channel aging effect with block fading and incorporating CRB (Cram\'er-Rao bound)-based sensing errors, we optimize both the time duration of large-scale detection and the frequency of small-scale update within each subframe to maximize the achievable rate while satisfying sensing requirements. Since the formulated optimization problem is non-convex, we propose a two-dimensional search-based optimization algorithm to obtain the optimal solution. Simulation results demonstrate the superiority of our proposed optimal design over three counterparts.

In offline reinforcement learning, a policy is learned using a static dataset in the absence of costly feedback from the environment. In contrast to the online setting, only using static datasets poses additional challenges, such as policies generating out-of-distribution samples. Model-based offline reinforcement learning methods try to overcome these by learning a model of the underlying dynamics of the environment and using it to guide policy search. It is beneficial but, with limited datasets, errors in the model and the issue of value overestimation among out-of-distribution states can worsen performance. Current model-based methods apply some notion of conservatism to the Bellman update, often implemented using uncertainty estimation derived from model ensembles. In this paper, we propose Constrained Latent Action Policies (C-LAP) which learns a generative model of the joint distribution of observations and actions. We cast policy learning as a constrained objective to always stay within the support of the latent action distribution, and use the generative capabilities of the model to impose an implicit constraint on the generated actions. Thereby eliminating the need to use additional uncertainty penalties on the Bellman update and significantly decreasing the number of gradient steps required to learn a policy. We empirically evaluate C-LAP on the D4RL and V-D4RL benchmark, and show that C-LAP is competitive to state-of-the-art methods, especially outperforming on datasets with visual observations.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. In low data regime, our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite, and achieves even better performance when combined with existing auxiliary tasks.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司