Educational technologies, and the systems of schooling in which they are deployed, enact particular ideologies about what is important to know and how learners should learn. As artificial intelligence technologies -- in education and beyond -- have led to inequitable outcomes for marginalized communities, various approaches have been developed to evaluate and mitigate AI systems' disparate impact. However, we argue in this paper that the dominant paradigm of evaluating fairness on the basis of performance disparities in AI models is inadequate for confronting the structural inequities that educational AI systems (re)produce. We draw on a lens of structural injustice informed by critical theory and Black feminist scholarship to critically interrogate several widely-studied and widely-adopted categories of educational AI systems and demonstrate how educational AI technologies are bound up in and reproduce historical legacies of structural injustice and inequity, regardless of the parity of their models' performance. We close with alternative visions for a more equitable future for educational AI research.
The Fisher information matrix (FIM) has been applied to the realm of deep learning. It is closely related to the loss landscape, the variance of the parameters, second order optimization, and deep learning theory. The exact FIM is either unavailable in closed form or too expensive to compute. In practice, it is almost always estimated based on empirical samples. We investigate two such estimators based on two equivalent representations of the FIM. They are both unbiased and consistent with respect to the underlying "true" FIM. Their estimation quality is characterized by their variance given in closed form. We bound their variances and analyze how the parametric structure of a deep neural network can impact the variance. We discuss the meaning of this variance measure and our bounds in the context of deep learning.
The Internet of Things (IoT) is an ongoing technological revolution. Embedded processors are the processing engines of smart IoT devices. For decades, these processors were mainly based on the Arm instruction set architecture (ISA). In recent years, the free and open RISC-V ISA standard has attracted the attention of industry and academia and is becoming the mainstream. Data security and user privacy protection are common challenges faced by all IoT devices. In order to deal with foreseeable security threats, the RISC-V community is studying security solutions aimed at achieving a root of trust (RoT) and ensuring that sensitive information on RISC-V devices is not tampered with or leaked. Many RISC-V security research projects are underway, but the academic community has not yet conducted a comprehensive survey of RISC-V security solutions. In order to fill this research gap, this paper presents an in-depth survey on RISC-V security technologies. This paper summarizes the representative security mechanisms of RISC-V hardware and architecture. Based on our survey, we predict the future research and development directions of RISC-V security. We hope that our research can inspire RISC-V researchers and developers.
In this paper, we hypothesize that the effects of the degree of typicality in natural semantic categories can be generated based on the structure of artificial categories learned with deep learning models. Motivated by the human approach to representing natural semantic categories and based on the Prototype Theory foundations, we propose a novel Computational Prototype Model (CPM) to represent the internal structure of semantic categories. Unlike other prototype learning approaches, our mathematical framework proposes a first approach to provide deep neural networks with the ability to model abstract semantic concepts such as category central semantic meaning, typicality degree of an object's image, and family resemblance relationship. We proposed several methodologies based on the typicality's concept to evaluate our CPM-model in image semantic processing tasks such as image classification, a global semantic description, and transfer learning. Our experiments on different image datasets, such as ImageNet and Coco, showed that our approach might be an admissible proposition in the effort to endow machines with greater power of abstraction for the semantic representation of objects' categories.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
Learning structural representations of node sets from graph-structured data is crucial for applications ranging from node-role discovery to link prediction and molecule classification. Graph Neural Networks (GNNs) have achieved great success in structural representation learning. However, most GNNs are limited by the 1-Weisfeiler-Lehman (WL) test and thus possible to generate identical representation for structures and graphs that are actually different. More powerful GNNs, proposed recently by mimicking higher-order-WL tests, only focus on entire-graph representations and cannot utilize sparsity of the graph structure to be computationally efficient. Here we propose a general class of structure-related features, termed Distance Encoding (DE), to assist GNNs in representing node sets with arbitrary sizes with strictly more expressive power than the 1-WL test. DE essentially captures the distance between the node set whose representation is to be learnt and each node in the graph, which includes important graph-related measures such as shortest-path-distance and generalized PageRank scores. We propose two general frameworks for GNNs to use DEs (1) as extra node attributes and (2) further as controllers of message aggregation in GNNs. Both frameworks may still utilize the sparse structure to keep scalability to process large graphs. In theory, we prove that these two frameworks can distinguish node sets embedded in almost all regular graphs where traditional GNNs always fail. We also rigorously analyze their limitations. Empirically, we evaluate these two frameworks on node structural roles prediction, link prediction and triangle prediction over six real networks. The results show that our models outperform GNNs without DEs by up-to 15% improvement in average accuracy and AUC. Our models also significantly outperform other SOTA baselines particularly designed for those tasks.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
It is not until recently that graph neural networks (GNNs) are adopted to perform graph representation learning, among which, those based on the aggregation of features within the neighborhood of a node achieved great success. However, despite such achievements, GNNs illustrate defects in identifying some common structural patterns which, unfortunately, play significant roles in various network phenomena. In this paper, we propose GraLSP, a GNN framework which explicitly incorporates local structural patterns into the neighborhood aggregation through random anonymous walks. Specifically, we capture local graph structures via random anonymous walks, powerful and flexible tools that represent structural patterns. The walks are then fed into the feature aggregation, where we design various mechanisms to address the impact of structural features, including adaptive receptive radius, attention and amplification. In addition, we design objectives that capture similarities between structures and are optimized jointly with node proximity objectives. With the adequate leverage of structural patterns, our model is able to outperform competitive counterparts in various prediction tasks in multiple datasets.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Recent years have witnessed significant progresses in deep Reinforcement Learning (RL). Empowered with large scale neural networks, carefully designed architectures, novel training algorithms and massively parallel computing devices, researchers are able to attack many challenging RL problems. However, in machine learning, more training power comes with a potential risk of more overfitting. As deep RL techniques are being applied to critical problems such as healthcare and finance, it is important to understand the generalization behaviors of the trained agents. In this paper, we conduct a systematic study of standard RL agents and find that they could overfit in various ways. Moreover, overfitting could happen "robustly": commonly used techniques in RL that add stochasticity do not necessarily prevent or detect overfitting. In particular, the same agents and learning algorithms could have drastically different test performance, even when all of them achieve optimal rewards during training. The observations call for more principled and careful evaluation protocols in RL. We conclude with a general discussion on overfitting in RL and a study of the generalization behaviors from the perspective of inductive bias.
We explore the use of deep learning hierarchical models for problems in financial prediction and classification. Financial prediction problems -- such as those presented in designing and pricing securities, constructing portfolios, and risk management -- often involve large data sets with complex data interactions that currently are difficult or impossible to specify in a full economic model. Applying deep learning methods to these problems can produce more useful results than standard methods in finance. In particular, deep learning can detect and exploit interactions in the data that are, at least currently, invisible to any existing financial economic theory.