Distributed Antenna Systems (DASs) employ multiple antenna arrays in remote radio units to achieve highly directional transmission and provide great coverage performance for future-generation networks. However, the utilization of active antenna arrays results in a significant increase in hardware costs and power consumption for DAS. To address these issues, integrating DAS with Reconfigurable Intelligent Surfaces (RIS) offers a viable approach to ensure transmission performance while maintaining low hardware costs and power consumption. To incorporate the merits of RIS into the DAS from practical consideration, a novel architecture of ``Reconfigurable Distributed Antennas and Reflecting Surfaces (RDARS)'' is proposed in this paper. Specifically, based on the design of the additional direct-through state together with the existing high-quality fronthaul link, any element of the RDARS can be dynamically programmed to connect with the base station (BS) via fibers and perform the connected mode as remote distributed antennas of the BS to receive or transmit signals. Additionally, RDARS also inherits the low-cost and low-energy-consumption benefits of fully passive RISs by default configuring the elements as passive to perform the reflection mode. As a result, RDARS offers flexible control over the trade-off between distribution gain and reflection gain to enhance performance. The ergodic achievable rate under the RDARS architecture is analyzed and closed-form expression with meaningful insights is derived. The theoretical analysis and simulation results prove that the RDARS achieves a higher achievable rate than both DAS and RIS. A RDARS prototype with 256 elements is built for real experiments which shows that the RDARS-aided system can achieve an additional 21% and 170% throughput improvement over DAS and RIS-aided systems, respectively.
The EPC GEN 2 communication protocol for Ultra-high frequency Radio Frequency Identification (RFID) has offered a promising avenue for advancing the intelligence of transportation infrastructure. With the capability of linking vehicles to RFID readers to crowdsource information from RFID tags on road infrastructures, the RF-enhanced road infrastructure (REI) can potentially transform data acquisition for urban transportation. Despite its potential, the broader adoption of RFID technologies in building intelligent roads has been limited by a deficiency in understanding how the GEN 2 protocol impacts system performance under different transportation settings. This paper fills this knowledge gap by presenting the system architecture and detailing the design challenges associated with REI. Comprehensive real-world experiments are conducted to assess REI's effectiveness across various urban contexts. The results yield crucial insights into the optimal design of on-vehicle RFID readers and on-road RFID tags, considering the constraints imposed by vehicle dynamics, road geometries, and tag placements. With the optimized designs of encoding schemes for reader-tag communication and on-vehicle antennas, REI is able to fulfill the requirements of traffic sign inventory management and environmental monitoring while falling short of catering to the demand for high-speed navigation. In particular, the Miller 2 encoding scheme strikes the best balance between reading performance (e.g., throughput) and noise tolerance for the multipath effect. Additionally, we show that the on-vehicle antenna should be oriented to maximize the available time for reading on-road tags, although it may reduce the received power by the tags in the forward link.
Entity Set Expansion (ESE) is a critical task aiming at expanding entities of the target semantic class described by seed entities. Most existing ESE methods are retrieval-based frameworks that need to extract contextual features of entities and calculate the similarity between seed entities and candidate entities. To achieve the two purposes, they iteratively traverse the corpus and the entity vocabulary, resulting in poor efficiency and scalability. Experimental results indicate that the time consumed by the retrieval-based ESE methods increases linearly with entity vocabulary and corpus size. In this paper, we firstly propose Generative Entity Set Expansion (GenExpan) framework, which utilizes a generative pre-trained auto-regressive language model to accomplish ESE task. Specifically, a prefix tree is employed to guarantee the validity of entity generation, and automatically generated class names are adopted to guide the model to generate target entities. Moreover, we propose Knowledge Calibration and Generative Ranking to further bridge the gap between generic knowledge of the language model and the goal of ESE task. For efficiency, expansion time consumed by GenExpan is independent of entity vocabulary and corpus size, and GenExpan achieves an average 600% speedup compared to strong baselines. For expansion effectiveness, our framework outperforms previous state-of-the-art ESE methods.
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data, however, this process might suffer from privacy issues and violations of data protection regulations. As a result, the ability to easily remove data related to individual users from such models while not deteriorating their predictive quality after the removal becomes increasingly important. To address these issues, in this work, we propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals, by introducing lightweight unlearning layers learned with a selective teacher-student objective into the transformers. In addition, we introduce a fusion mechanism to effectively combine different unlearning layers that learns to forget different sets of data to handle a sequence of forgetting operations. Experiments on classification and generation tasks demonstrate the effectiveness of our proposed methods compared to the state-of-the-art baselines.
In-band Network Telemetry (INT) has emerged as a promising network measurement technology. However, existing network telemetry systems lack the flexibility to meet diverse telemetry requirements and are also difficult to adapt to dynamic network environments. In this paper, we propose AdapINT, a versatile and adaptive in-band network telemetry framework assisted by dual-timescale probes, including long-period auxiliary probes (APs) and short-period dynamic probes (DPs). Technically, the APs collect basic network status information, which is used for the path planning of DPs. To achieve full network coverage, we propose an auxiliary probes path deployment (APPD) algorithm based on the Depth-First-Search (DFS). The DPs collect specific network information for telemetry tasks. To ensure that the DPs can meet diverse telemetry requirements and adapt to dynamic network environments, we apply the deep reinforcement learning (DRL) technique and transfer learning method to design the dynamic probes path deployment (DPPD) algorithm. The evaluation results show that AdapINT can redesign the telemetry system according to telemetry requirements and network environments. AdapINT can reduce telemetry latency by 75\% in online games and video conferencing scenarios. For overhead-aware networks, AdapINT can reduce control overheads by 34\% in cloud computing services.
Massive multiple-input multiple-output (MIMO) for 5G is evolving into the extremely large-scale antenna array (ELAA) to increase the spectrum efficiency by orders of magnitude for 6G communications. ELAA introduces spherical-wave-based near-field communications, where channel capacity can be significantly improved for single-user and multi-user scenarios. Unfortunately, the near-field region at large incidence/emergence angles is greatly reduced with the widely studied uniform linear array (ULA). Thus, many randomly distributed users may fail to benefit from near-field communications. In this paper, we leverage the rotational symmetry of uniform circular array (UCA) to provide uniform and enlarged near-field regions at all angles, enabling more users to benefit from near-field communications. Specifically, by exploiting the geometrical relationship between UCA and users, the near-field beamforming technique for UCA is developed. Based on the analysis of near-field beamforming, we reveal that UCA is able to provide a larger near-field region than ULA in terms of the effective Rayleigh distance. Moreover, a concentric-ring codebook is designed to realize efficient codebook-based beamforming in the near-field region. In addition, we find out that UCA could generate orthogonal near-field beams along the same direction when the focal point of the near-field beam is exactly the zeros of other beams, which has the potential to further improve spectrum efficiency in multi-user communications compared with ULA. Simulation results are provided to verify the effectiveness of theoretical analysis and feasibility of UCA to enable more users to benefit from near-field communications by broadening the near-field region.
Multimodal Re-Identification (ReID) is a popular retrieval task that aims to re-identify objects across diverse data streams, prompting many researchers to integrate multiple modalities into a unified representation. While such fusion promises a holistic view, our investigations shed light on potential pitfalls. We uncover that prevailing late-fusion techniques often produce suboptimal latent representations when compared to methods that train modalities in isolation. We argue that this effect is largely due to the inadvertent relaxation of the training objectives on individual modalities when using fusion, what others have termed modality laziness. We present a nuanced point-of-view that this relaxation can lead to certain modalities failing to fully harness available task-relevant information, and yet, offers a protective veil to noisy modalities, preventing them from overfitting to task-irrelevant data. Our findings also show that unimodal concatenation (UniCat) and other late-fusion ensembling of unimodal backbones, when paired with best-known training techniques, exceed the current state-of-the-art performance across several multimodal ReID benchmarks. By unveiling the double-edged sword of "modality laziness", we motivate future research in balancing local modality strengths with global representations.
Detecting stereotypes and biases in Large Language Models (LLMs) can enhance fairness and reduce adverse impacts on individuals or groups when these LLMs are applied. However, the majority of existing methods focus on measuring the model's preference towards sentences containing biases and stereotypes within datasets, which lacks interpretability and cannot detect implicit biases and stereotypes in the real world. To address this gap, this paper introduces a four-stage framework to directly evaluate stereotypes and biases in the generated content of LLMs, including direct inquiry testing, serial or adapted story testing, implicit association testing, and unknown situation testing. Additionally, the paper proposes multi-dimensional evaluation metrics and explainable zero-shot prompts for automated evaluation. Using the education sector as a case study, we constructed the Edu-FairMonitor based on the four-stage framework, which encompasses 12,632 open-ended questions covering nine sensitive factors and 26 educational scenarios. Experimental results reveal varying degrees of stereotypes and biases in five LLMs evaluated on Edu-FairMonitor. Moreover, the results of our proposed automated evaluation method have shown a high correlation with human annotations.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.