We study the parameterized complexity of #IndSub($\Phi$), where given a graph $G$ and an integer $k$, the task is to count the number of induced subgraphs on $k$ vertices that satisfy the graph property $\Phi$. Focke and Roth [STOC 2022] completely characterized the complexity for each $\Phi$ that is a hereditary property (that is, closed under vertex deletions): #IndSub($\Phi$) is #W[1]-hard except in the degenerate cases when every graph satisfies $\Phi$ or only finitely many graphs satisfy $\Phi$. We complement this result with a classification for each $\Phi$ that is edge monotone (that is, closed under edge deletions): #IndSub($\Phi$) is #W[1]-hard except in the degenerate case when there are only finitely many integers $k$ such that $\Phi$ is nontrivial on $k$-vertex graphs. Our result generalizes earlier results for specific properties $\Phi$ that are related to the connectivity or density of the graph. Further, we extend the #W[1]-hardness result by a lower bound which shows that #IndSub($\Phi$) cannot be solved in time $f(k) \cdot |V(G)|^{o(\sqrt{\log k/\log\log k})}$ for any function $f$, unless the Exponential-Time Hypothesis (ETH) fails. For many natural properties, we obtain even a tight bound $f(k) \cdot |V(G)|^{o(k)}$; for example, this is the case for every property $\Phi$ that is nontrivial on $k$-vertex graphs for each $k$ greater than some $k_0$.
We study the Fr\'echet queries problem. It is a data structure problem, where we are given a set $S$ of $n$ polygonal curves and a distance threshold $\rho$. The data structure should support queries with a polygonal curve $q$ for the elements of $S$, for which the continuous Fr\'echet distance to $q$ is at most $\rho$. Afshani and Driemel in 2018 studied this problem for two-dimensional polygonal curves and gave upper and lower bounds on the space-query time tradeoff. We study the case that the ambient space of the curves is one-dimensional and show an intimate connection to the well-studied rectangle stabbing problem. Here, we are given a set of hyperrectangles as input and a query with a point $q$ should return all input rectangles that contain this point. Using known data structures for rectangle stabbing or orthogonal range searching this directly leads to a data structure with $\mathcal{O}(n \log ^{t-1} n)$ storage and $\mathcal{O}(\log^{t-1} n+k)$ query time, where $k$ denotes the output size and $t$ can be chosen as the maximum number of vertices of either (a) the stored curves or (b) the query curves. The resulting bounds improve upon the bounds by Afshani and Driemel in both the storage and query time. In addition, we show that known lower bounds for rectangle stabbing and orthogonal range reporting with dimension parameter $d= \lfloor t/2 \rfloor$ can be applied to our problem via reduction. .
We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.
We consider a distributed multi-user secret sharing (DMUSS) setting in which there is a dealer, $n$ storage nodes, and $m$ secrets. Each user demands a $t$-subset of $m$ secrets. Earlier work in this setting dealt with the case of $t=1$; in this work, we consider general $t$. The user downloads shares from the storage nodes based on the designed access structure and reconstructs its secrets. We identify a necessary condition on the access structures to ensure weak secrecy. We also make a connection between access structures for this problem and $t$-disjunct matrices. We apply various $t$-disjunct matrix constructions in this setting and compare their performance in terms of the number of storage nodes and communication complexity. We also derive bounds on the optimal communication complexity of a distributed secret sharing protocol. Finally, we characterize the capacity region of the DMUSS problem when the access structure is specified.
Given an input graph $G = (V, E)$, an additive emulator $H = (V, E', w)$ is a sparse weighted graph that preserves all distances in $G$ with small additive error. A recent line of inquiry has sought to determine the best additive error achievable in the sparsest setting, when $H$ has a linear number of edges. In particular, the work of [Kogan and Parter, ICALP 2023], following [Pettie, ICALP 2007], constructed linear size emulators with $+O(n^{0.222})$ additive error. It is known that the worst-case additive error must be at least $+\Omega(n^{2/29})$ due to [Lu, Vassilevska Williams, Wein, and Xu, SODA 2022]. We present a simple linear-size emulator construction that achieves additive error $+O(n^{0.191})$. Our approach extends the path-buying framework developed by [Baswana, Kavitha, Mehlhorn, and Pettie, SODA 2005] and [Vassilevska Williams and Bodwin, SODA 2016] to the setting of sparse additive emulators.
In the kernel density estimation (KDE) problem one is given a kernel $K(x, y)$ and a dataset $P$ of points in a Euclidean space, and must prepare a data structure that can quickly answer density queries: given a point $q$, output a $(1+\epsilon)$-approximation to $\mu:=\frac1{|P|}\sum_{p\in P} K(p, q)$. The classical approach to KDE is the celebrated fast multipole method of [Greengard and Rokhlin]. The fast multipole method combines a basic space partitioning approach with a multidimensional Taylor expansion, which yields a $\approx \log^d (n/\epsilon)$ query time (exponential in the dimension $d$). A recent line of work initiated by [Charikar and Siminelakis] achieved polynomial dependence on $d$ via a combination of random sampling and randomized space partitioning, with [Backurs et al.] giving an efficient data structure with query time $\approx \mathrm{poly}{\log(1/\mu)}/\epsilon^2$ for smooth kernels. Quadratic dependence on $\epsilon$, inherent to the sampling methods, is prohibitively expensive for small $\epsilon$. This issue is addressed by quasi-Monte Carlo methods in numerical analysis. The high level idea in quasi-Monte Carlo methods is to replace random sampling with a discrepancy based approach -- an idea recently applied to coresets for KDE by [Phillips and Tai]. The work of Phillips and Tai gives a space efficient data structure with query complexity $\approx 1/(\epsilon \mu)$. This is polynomially better in $1/\epsilon$, but exponentially worse in $1/\mu$. We achieve the best of both: a data structure with $\approx \mathrm{poly}{\log(1/\mu)}/\epsilon$ query time for smooth kernel KDE. Our main insight is a new way to combine discrepancy theory with randomized space partitioning inspired by, but significantly more efficient than, that of the fast multipole methods. We hope that our techniques will find further applications to linear algebra for kernel matrices.
The manual modeling of complex systems is a daunting task; and although a plethora of methods exist that mitigate this issue, the problem remains very difficult. Recent advances in generative AI have allowed the creation of general-purpose chatbots, capable of assisting software engineers in various modeling tasks. However, these chatbots are often inaccurate, and an unstructured use thereof could result in erroneous system models. In this paper, we outline a method for the safer and more structured use of chatbots as part of the modeling process. To streamline this integration, we propose leveraging scenario-based modeling techniques, which are known to facilitate the automated analysis of models. We argue that through iterative invocations of the chatbot and the manual and automatic inspection of the resulting models, a more accurate system model can eventually be obtained. We describe favorable preliminary results, which highlight the potential of this approach.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.