亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of 3D neural representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for memory-efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANS. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the superior computational advantage of convolutional networks. The code will be available at: //github.com/mshahbazi72/NeRF-GAN-Distillation

相關內容

在數學(特別是功能分析)中,卷積是對兩個函數(f和g)的數學運算,產生三個函數,表示第一個函數的形狀如何被另一個函數修改。 卷積一詞既指結果函數,又指計算結果的過程。 它定義為兩個函數的乘積在一個函數反轉和移位后的積分。 并針對所有shift值評估積分,從而生成卷積函數。

We investigate the use of 2D black-and-white textures for the visualization of categorical data and contribute a summary of texture attributes, and the results of three experiments that elicited design strategies as well as aesthetic and effectiveness measures. Black-and-white textures are useful, for instance, as a visual channel for categorical data on low-color displays, in 2D/3D print, to achieve the aesthetic of historic visualizations, or to retain the color hue channel for other visual mappings. We specifically study how to use what we call geometric and iconic textures. Geometric textures use patterns of repeated abstract geometric shapes, while iconic textures use repeated icons that may stand for data categories. We parameterized both types of textures and developed a tool for designers to create textures on simple charts by adjusting texture parameters. 30 visualization experts used our tool and designed 66 textured bar charts, pie charts, and maps. We then had 150 participants rate these designs for aesthetics. Finally, with the top-rated geometric and iconic textures, our perceptual assessment experiment with 150 participants revealed that textured charts perform about equally well as non-textured charts, and that there are some differences depending on the type of chart.

Augmenting automated vehicles to wirelessly detect and respond to external events before they are detectable by onboard sensors is crucial for developing context-aware driving strategies. To this end, we present an automated vehicle platform, designed with connectivity, ease of use and modularity in mind, both in hardware and software. It is based on the Kia Soul EV with a modified version of the Open-Source Car Control (OSCC) drive-by-wire module, uses the open-source Robot Operating System (ROS and ROS 2) in its software architecture, and provides a straightforward solution for transitioning from simulations to real-world tests. We demonstrate the effectiveness of the platform through a synchronised driving test, where sensor data is exchanged wirelessly, and a model-predictive controller is used to actuate the automated vehicle.

We introduce a novel bottom-up approach for the extraction of chart data. Our model utilizes images of charts as inputs and learns to detect keypoints (KP), which are used to reconstruct the components within the plot area. Our novelty lies in detecting a fusion of continuous and discrete KP as predicted heatmaps. A combination of sparse and dense per-pixel objectives coupled with a uni-modal self-attention-based feature-fusion layer is applied to learn KP embeddings. Further leveraging deep metric learning for unsupervised clustering, allows us to segment the chart plot area into various objects. By further matching the chart components to the legend, we are able to obtain the data series names. A post-processing threshold is applied to the KP embeddings to refine the object reconstructions and improve accuracy. Our extensive experiments include an evaluation of different modules for KP estimation and the combination of deep layer aggregation and corner pooling approaches. The results of our experiments provide extensive evaluation for the task of real-world chart data extraction.

The multi-level aggregation (MLA) module has emerged as a critical component for advancing new-era vision back-bones in semantic segmentation. In this paper, we propose Lawin (large window) Transformer, a novel MLA architecture that creatively utilizes multi-scale feature maps from the vision backbone. At the core of Lawin Transformer is the Lawin attention, a newly designed window attention mechanism capable of querying much larger context windows than local windows. We focus on studying the efficient and simplistic application of the large-window paradigm, allowing for flexible regulation of the ratio of large context to query and capturing multi-scale representations. We validate the effectiveness of Lawin Transformer on Cityscapes and ADE20K, consistently demonstrating great superiority to widely-used MLA modules when combined with new-era vision backbones. The code is available at //github.com/yan-hao-tian/lawin.

Diffusion models have shown promising results in cross-modal generation tasks, including text-to-image and text-to-audio generation. However, generating music, as a special type of audio, presents unique challenges due to limited availability of music data and sensitive issues related to copyright and plagiarism. In this paper, to tackle these challenges, we first construct a state-of-the-art text-to-music model, MusicLDM, that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, to address the limitations of training data and to avoid plagiarism, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, which recombine training audio directly or via a latent embeddings space, respectively. Such mixup strategies encourage the model to interpolate between musical training samples and generate new music within the convex hull of the training data, making the generated music more diverse while still staying faithful to the corresponding style. In addition to popular evaluation metrics, we design several new evaluation metrics based on CLAP score to demonstrate that our proposed MusicLDM and beat-synchronous mixup strategies improve both the quality and novelty of generated music, as well as the correspondence between input text and generated music.

Language models demonstrate remarkable capacity to generalize representations learned in one modality to downstream tasks in other modalities. Can we trace this ability to individual neurons? We study the case where a frozen text transformer is augmented with vision using a self-supervised visual encoder and a single linear projection learned on an image-to-text task. Outputs of the projection layer are not immediately decodable into language describing image content; instead, we find that translation between modalities occurs deeper within the transformer. We introduce a procedure for identifying "multimodal neurons" that convert visual representations into corresponding text, and decoding the concepts they inject into the model's residual stream. In a series of experiments, we show that multimodal neurons operate on specific visual concepts across inputs, and have a systematic causal effect on image captioning.

Applying large-scale pre-trained visual models like CLIP to few-shot action recognition tasks can benefit performance and efficiency. Utilizing the "pre-training, fine-tuning" paradigm makes it possible to avoid training a network from scratch, which can be time-consuming and resource-intensive. However, this method has two drawbacks. First, limited labeled samples for few-shot action recognition necessitate minimizing the number of tunable parameters to mitigate over-fitting, also leading to inadequate fine-tuning that increases resource consumption and may disrupt the generalized representation of models. Second, the video's extra-temporal dimension challenges few-shot recognition's effective temporal modeling, while pre-trained visual models are usually image models. This paper proposes a novel method called Multimodal Adaptation of CLIP (MA-CLIP) to address these issues. It adapts CLIP for few-shot action recognition by adding lightweight adapters, which can minimize the number of learnable parameters and enable the model to transfer across different tasks quickly. The adapters we design can combine information from video-text multimodal sources for task-oriented spatiotemporal modeling, which is fast, efficient, and has low training costs. Additionally, based on the attention mechanism, we design a text-guided prototype construction module that can fully utilize video-text information to enhance the representation of video prototypes. Our MA-CLIP is plug-and-play, which can be used in any different few-shot action recognition temporal alignment metric.

Effective fusion of multi-scale features is crucial for improving speaker verification performance. While most existing methods aggregate multi-scale features in a layer-wise manner via simple operations, such as summation or concatenation. This paper proposes a novel architecture called Enhanced Res2Net (ERes2Net), which incorporates both local and global feature fusion techniques to improve the performance. The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal. The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal. To facilitate effective feature fusion in both LFF and GFF, an attentional feature fusion module is employed in the ERes2Net architecture, replacing summation or concatenation operations. A range of experiments conducted on the VoxCeleb datasets demonstrate the superiority of the ERes2Net in speaker verification. Code has been made publicly available at //github.com/alibaba-damo-academy/3D-Speaker.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司