Recent advances in Foundation Models such as Large Language Models (LLMs) have propelled them to the forefront of Recommender Systems (RS). Despite their utility, there is a growing concern that LLMs might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations. Since fairness is critical for RS as many users take it for decision-making and demand fulfillment, this paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on specific sensitive features such as gender or age. In this paper, we dive into the extent of unfairness exhibited by LLM-based recommender models based on both T5 and LLaMA backbones, and discuss appropriate methods for promoting equitable treatment of users in LLM-based recommendation models. We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and compared with both matching-based and sequential-based fairness-aware recommendation models. Results show that CFP achieves better recommendation performance with a high level of fairness. Data and code are open-sourced at //github.com/agiresearch/UP5.
Explainable Multimodal Emotion Recognition (EMER) is an emerging task that aims to achieve reliable and accurate emotion recognition. However, due to the high annotation cost, the existing dataset (denoted as EMER-Fine) is small, making it difficult to perform supervised training. To reduce the annotation cost and expand the dataset size, this paper reviews the previous dataset construction process. Then, we simplify the annotation pipeline, avoid manual checks, and replace the closed-source models with open-source models. Finally, we build \textbf{EMER-Coarse}, a coarsely-labeled dataset containing large-scale samples. Besides the dataset, we propose a two-stage training framework \textbf{AffectGPT}. The first stage exploits EMER-Coarse to learn a coarse mapping between multimodal inputs and emotion-related descriptions; the second stage uses EMER-Fine to better align with manually-checked results. Experimental results demonstrate the effectiveness of our proposed method on the challenging EMER task. To facilitate further research, we will make the code and dataset available at: //github.com/zeroQiaoba/AffectGPT.
Recent advancements in Latent Diffusion Models (LDMs) have propelled them to the forefront of various generative tasks. However, their iterative sampling process poses a significant computational burden, resulting in slow generation speeds and limiting their application in text-to-audio generation deployment. In this work, we introduce AudioLCM, a novel consistency-based model tailored for efficient and high-quality text-to-audio generation. AudioLCM integrates Consistency Models into the generation process, facilitating rapid inference through a mapping from any point at any time step to the trajectory's initial point. To overcome the convergence issue inherent in LDMs with reduced sample iterations, we propose the Guided Latent Consistency Distillation with a multi-step Ordinary Differential Equation (ODE) solver. This innovation shortens the time schedule from thousands to dozens of steps while maintaining sample quality, thereby achieving fast convergence and high-quality generation. Furthermore, to optimize the performance of transformer-based neural network architectures, we integrate the advanced techniques pioneered by LLaMA into the foundational framework of transformers. This architecture supports stable and efficient training, ensuring robust performance in text-to-audio synthesis. Experimental results on text-to-sound generation and text-to-music synthesis tasks demonstrate that AudioLCM needs only 2 iterations to synthesize high-fidelity audios, while it maintains sample quality competitive with state-of-the-art models using hundreds of steps. AudioLCM enables a sampling speed of 333x faster than real-time on a single NVIDIA 4090Ti GPU, making generative models practically applicable to text-to-audio generation deployment. Our extensive preliminary analysis shows that each design in AudioLCM is effective.
Successful deployment of Deep Neural Networks (DNNs) requires their validation with an adequate test set to ensure a sufficient degree of confidence in test outcomes. Although well-established test adequacy assessment techniques have been proposed for DNNs, we still need to investigate their application within a comprehensive methodology for accurately predicting the fault detection ability of test sets and thus assessing their adequacy. In this paper, we propose and evaluate TEASMA, a comprehensive and practical methodology designed to accurately assess the adequacy of test sets for DNNs. In practice, TEASMA allows engineers to decide whether they can trust high-accuracy test results and thus validate the DNN before its deployment. Based on a DNN model's training set, TEASMA provides a procedure to build accurate DNN-specific prediction models of the Fault Detection Rate (FDR) of a test set using an existing adequacy metric, thus enabling its assessment. We evaluated TEASMA with four state-of-the-art test adequacy metrics: Distance-based Surprise Coverage (DSC), Likelihood-based Surprise Coverage (LSC), Input Distribution Coverage (IDC), and Mutation Score (MS). Our extensive empirical evaluation across multiple DNN models and input sets such as ImageNet, reveals a strong linear correlation between the predicted and actual FDR values derived from MS, DSC, and IDC, with minimum R^2 values of 0.94 for MS and 0.90 for DSC and IDC. Furthermore, a low average Root Mean Square Error (RMSE) of 9% between actual and predicted FDR values across all subjects, when relying on regression analysis and MS, demonstrates the latter's superior accuracy when compared to DSC and IDC, with RMSE values of 0.17 and 0.18, respectively. Overall, these results suggest that TEASMA provides a reliable basis for confidently deciding whether to trust test results for DNN models.
Ensuring that AI systems reliably and robustly avoid harmful or dangerous behaviours is a crucial challenge, especially for AI systems with a high degree of autonomy and general intelligence, or systems used in safety-critical contexts. In this paper, we will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI. The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees. This is achieved by the interplay of three core components: a world model (which provides a mathematical description of how the AI system affects the outside world), a safety specification (which is a mathematical description of what effects are acceptable), and a verifier (which provides an auditable proof certificate that the AI satisfies the safety specification relative to the world model). We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them. We also argue for the necessity of this approach to AI safety, and for the inadequacy of the main alternative approaches.
Recent advancements in Large Language Models (LLMs) have significantly improved their performance across various Natural Language Processing (NLP) tasks. However, LLMs still struggle with generating non-factual responses due to limitations in their parametric memory. Retrieval-Augmented Generation (RAG) systems address this issue by incorporating external knowledge with a retrieval module. Despite their successes, however, current RAG systems face challenges with retrieval failures and the limited ability of LLMs to filter out irrelevant information. Therefore, in this work, we propose DSLR (Document Refinement with Sentence-Level Re-ranking and Reconstruction), an unsupervised framework that decomposes retrieved documents into sentences, filters out irrelevant sentences, and reconstructs them again into coherent passages. We experimentally validate DSLR on multiple open-domain QA datasets and the results demonstrate that DSLR significantly enhances the RAG performance over conventional fixed-size passage. Furthermore, our DSLR enhances performance in specific, yet realistic scenarios without the need for additional training, providing an effective and efficient solution for refining retrieved documents in RAG systems.
The reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs). Notably, collecting human feedback for RLHF can be resource-intensive and lead to scalability issues for LLMs and complex tasks. Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback. By enabling stable and reliable structural learning from fewer samples, Proto-RM significantly enhances LLMs' adaptability and accuracy in interpreting human preferences. Extensive experiments on various datasets demonstrate that Proto-RM significantly improves the performance of reward models and LLMs in human feedback tasks, achieving comparable and usually better results than traditional methods, while requiring significantly less data. in data-limited scenarios. This research offers a promising direction for enhancing the efficiency of reward models and optimizing the fine-tuning of language models under restricted feedback conditions.
While Centralized Training with Decentralized Execution (CTDE) has become the prevailing paradigm in Multi-Agent Reinforcement Learning (MARL), it may not be suitable for scenarios in which agents can fully communicate and share observations with each other. Fully centralized methods, also know as Centralized Training with Centralized Execution (CTCE) methods, can fully utilize observations of all the agents by treating the entire system as a single agent. However, traditional CTCE methods suffer from scalability issues due to the exponential growth of the joint action space. To address these challenges, in this paper we propose JointPPO, a CTCE method that uses Proximal Policy Optimization (PPO) to directly optimize the joint policy of the multi-agent system. JointPPO decomposes the joint policy into conditional probabilities, transforming the decision-making process into a sequence generation task. A Transformer-based joint policy network is constructed, trained with a PPO loss tailored for the joint policy. JointPPO effectively handles a large joint action space and extends PPO to multi-agent setting in a clear and concise manner. Extensive experiments on the StarCraft Multi-Agent Challenge (SMAC) testbed demonstrate the superiority of JointPPO over strong baselines. Ablation experiments and analyses are conducted to explores the factors influencing JointPPO's performance.
The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes. Further code and video results are released at //yuxuanw.me/vcedit/.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).