This paper focuses on advancing outdoor wireless systems to better support ubiquitous extended reality (XR) applications, and close the gap with current indoor wireless transmission capabilities. We propose a hybrid knowledge-data driven method for channel semantic acquisition and multi-user beamforming in cell-free massive multiple-input multiple-output (MIMO) systems. Specifically, we firstly propose a data-driven multiple layer perceptron (MLP)-Mixer-based auto-encoder for channel semantic acquisition, where the pilot signals, CSI quantizer for channel semantic embedding, and CSI reconstruction for channel semantic extraction are jointly optimized in an end-to-end manner. Moreover, based on the acquired channel semantic, we further propose a knowledge-driven deep-unfolding multi-user beamformer, which is capable of achieving good spectral efficiency with robustness to imperfect CSI in outdoor XR scenarios. By unfolding conventional successive over-relaxation (SOR)-based linear beamforming scheme with deep learning, the proposed beamforming scheme is capable of adaptively learning the optimal parameters to accelerate convergence and improve the robustness to imperfect CSI. The proposed deep unfolding beamforming scheme can be used for access points (APs) with fully-digital array and APs with hybrid analog-digital array. Simulation results demonstrate the effectiveness of our proposed scheme in improving the accuracy of channel acquisition, as well as reducing complexity in both CSI acquisition and beamformer design. The proposed beamforming method achieves approximately 96% of the converged spectrum efficiency performance after only three iterations in downlink transmission, demonstrating its efficacy and potential to improve outdoor XR applications.
This paper focuses on multiple-access protocol design in a wireless network assisted by multiple reconfigurable intelligent surfaces (RISs). By extending the existing approaches in single-user or single-RIS cases, we present two benchmark schemes for this multi-user multi-RIS scenario. Inspecting their shortcomings, a simple but efficient method coined opportunistic multi-user reflection (OMUR) is proposed. The key idea is to opportunistically select the best user as the anchor for optimizing the RISs, and non-orthogonally transmitting all users' signals simultaneously. A simplified version of OMUR exploiting random phase shifts is also proposed to avoid the complexity of RIS channel estimation.
This paper focuses on the design of transmission methods and reflection optimization for a wireless system assisted by a single or multiple reconfigurable intelligent surfaces (RISs). The existing techniques are either too complex to implement in practical systems or too inefficient to achieve high performance. To overcome the shortcomings of the existing schemes, we propose a simple but efficient approach based on \textit{opportunistic reflection} and \textit{non-orthogonal transmission}. The key idea is opportunistically selecting the best user that can reap the maximal gain from the optimally reflected signals via RIS. That is to say, only the channel state information of the best user is used for RIS reflection optimization, which can in turn lower complexity substantially. In addition, the second user is selected to superpose its signal on that of the primary user, where the benefits of non-orthogonal transmission, i.e., high system capacity and improved user fairness, are obtained. Additionally, a simplified variant exploiting random phase shifts is proposed to avoid the high overhead of RIS channel estimation.
This paper investigates task-oriented communication for multi-device cooperative edge inference, where a group of distributed low-end edge devices transmit the extracted features of local samples to a powerful edge server for inference. While cooperative edge inference can overcome the limited sensing capability of a single device, it substantially increases the communication overhead and may incur excessive latency. To enable low-latency cooperative inference, we propose a learning-based communication scheme that optimizes local feature extraction and distributed feature encoding in a task-oriented manner, i.e., to remove data redundancy and transmit information that is essential for the downstream inference task rather than reconstructing the data samples at the edge server. Specifically, we leverage an information bottleneck (IB) principle to extract the task-relevant feature at each edge device and adopt a distributed information bottleneck (DIB) framework to formalize a single-letter characterization of the optimal rate-relevance tradeoff for distributed feature encoding. To admit flexible control of the communication overhead, we extend the DIB framework to a distributed deterministic information bottleneck (DDIB) objective that explicitly incorporates the representational costs of the encoded features. As the IB-based objectives are computationally prohibitive for high-dimensional data, we adopt variational approximations to make the optimization problems tractable. To compensate the potential performance loss due to the variational approximations, we also develop a selective retransmission (SR) mechanism to identify the redundancy in the encoded features of multiple edge devices to attain additional communication overhead reduction. Extensive experiments evidence that the proposed task-oriented communication scheme achieves a better rate-relevance tradeoff than baseline methods.
In different wireless network scenarios, multiple network entities need to cooperate in order to achieve a common task with minimum delay and energy consumption. Future wireless networks mandate exchanging high dimensional data in dynamic and uncertain environments, therefore implementing communication control tasks becomes challenging and highly complex. Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems with partially observable states in a cooperative fashion where agents build an emergent communication protocol to solve complex tasks. This paper articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities to solve complex tasks such as autonomous driving, robot navigation, flying base stations network planning, and smart city applications. An overview of EC-MARL algorithms and their design criteria are provided while presenting use cases and research opportunities on this emerging topic.
The highly heterogeneous ecosystem of Next Generation (NextG) wireless communication systems calls for novel networking paradigms where functionalities and operations can be dynamically and optimally reconfigured in real time to adapt to changing traffic conditions and satisfy stringent and diverse Quality of Service (QoS) demands. Open Radio Access Network (RAN) technologies, and specifically those being standardized by the O-RAN Alliance, make it possible to integrate network intelligence into the once monolithic RAN via intelligent applications, namely, xApps and rApps. These applications enable flexible control of the network resources and functionalities, network management, and orchestration through data-driven control loops. Despite recent work demonstrating the effectiveness of Deep Reinforcement Learning (DRL) in controlling O-RAN systems, how to design these solutions in a way that does not create conflicts and unfair resource allocation policies is still an open challenge. In this paper, we perform a comparative analysis where we dissect the impact of different DRL-based xApp designs on network performance. Specifically, we benchmark 12 different xApps that embed DRL agents trained using different reward functions, with different action spaces and with the ability to hierarchically control different network parameters. We prototype and evaluate these xApps on Colosseum, the world's largest O-RAN-compliant wireless network emulator with hardware-in-the-loop. We share the lessons learned and discuss our experimental results, which demonstrate how certain design choices deliver the highest performance while others might result in a competitive behavior between different classes of traffic with similar objectives.
Physical layer security (PLS) technologies are expected to play an important role in the next-generation wireless networks, by providing secure communication to protect critical and sensitive information from illegitimate devices. In this paper, we propose a novel secure communication scheme where the legitimate receiver use full-duplex (FD) technology to transmit jamming signals with the assistance of simultaneous transmitting and reflecting reconfigurable intelligent surface (STARRIS) which can operate under the energy splitting (ES) model and the mode switching (MS) model, to interfere with the undesired reception by the eavesdropper. We aim to maximize the secrecy capacity by jointly optimizing the FD beamforming vectors, amplitudes and phase shift coefficients for the ESRIS, and mode selection and phase shift coefficients for the MS-RIS. With above optimization, the proposed scheme can concentrate the jamming signals on the eavesdropper while simultaneously eliminating the self-interference (SI) in the desired receiver. To tackle the coupling effect of multiple variables, we propose an alternating optimization algorithm to solve the problem iteratively. Furthermore, we handle the non-convexity of the problem by the the successive convex approximation (SCA) scheme for the beamforming optimizations, amplitudes and phase shifts optimizations for the ES-RIS, as well as the phase shifts optimizations for the MS-RIS. In addition, we adopt a semi-definite relaxation (SDR) and Gaussian randomization process to overcome the difficulty introduced by the binary nature of mode optimization of the MS-RIS. Simulation results validate the performance of our proposed schemes as well as the efficacy of adapting both two types of STAR-RISs in enhancing secure communications when compared to the traditional selfinterference cancellation technology.
By offloading computation-intensive tasks of vehicles to roadside units (RSUs), mobile edge computing (MEC) in the Internet of Vehicles (IoV) can relieve the onboard computation burden. However, existing model-based task offloading methods suffer from heavy computational complexity with the increase of vehicles and data-driven methods lack interpretability. To address these challenges, in this paper, we propose a knowledge-driven multi-agent reinforcement learning (KMARL) approach to reduce the latency of task offloading in cybertwin-enabled IoV. Specifically, in the considered scenario, the cybertwin serves as a communication agent for each vehicle to exchange information and make offloading decisions in the virtual space. To reduce the latency of task offloading, a KMARL approach is proposed to select the optimal offloading option for each vehicle, where graph neural networks are employed by leveraging domain knowledge concerning graph-structure communication topology and permutation invariance into neural networks. Numerical results show that our proposed KMARL yields higher rewards and demonstrates improved scalability compared with other methods, benefitting from the integration of domain knowledge.
This paper investigates double RIS-assisted MIMO communication systems over Rician fading channels with finite scatterers, spatial correlation, and the existence of a double-scattering link between the transceiver. First, the statistical information is driven in closed form for the aggregated channels, unveiling various influences of the system and environment on the average channel power gains. Next, we study two active and passive beamforming designs corresponding to two objectives. The first problem maximizes channel capacity by jointly optimizing the active precoding and combining matrices at the transceivers and passive beamforming at the double RISs subject to the transmitting power constraint. In order to tackle the inherently non-convex issue, we propose an efficient alternating optimization algorithm (AO) based on the alternating direction method of multipliers (ADMM). The second problem enhances communication reliability by jointly training the encoder and decoder at the transceivers and the phase shifters at the RISs. Each neural network representing a system entity in an end-to-end learning framework is proposed to minimize the symbol error rate of the detected symbols by controlling the transceiver and the RISs phase shifts. Numerical results verify our analysis and demonstrate the superior improvements of phase shift designs to boost system performance.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.