亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the face of increasing demand for zero-touch networks to automate network management and operations, two pivotal concepts have emerged: "Learn to Slice" (L2S) and "Slice to Learn" (S2L). L2S involves leveraging Artificial intelligence (AI) techniques to optimize network slicing for general services, while S2L centers on tailoring network slices to meet the specific needs of various AI services. The complexity of optimizing and automating S2L surpasses that of L2S due to intricate AI services' requirements, such as handling uncontrollable parameters, learning in adversarial conditions, and achieving long-term performance goals. This paper aims to automate and optimize S2L by integrating the two concepts of L2S and S2L by using an intelligent slicing agent to solve S2L. Indeed, we choose two candidate slicing agents, namely the Exploration and Exploitation (EXP3) and Deep Q-Network (DQN) from the Online Convex Optimization (OCO) and Deep Reinforcement Learning (DRL) frameworks, and compare them. Our evaluation involves a series of carefully designed experiments that offer valuable insights into the strengths and limitations of EXP3 and DQN in slicing for AI services, thereby contributing to the advancement of zero-touch network capabilities.

相關內容

The development of highly sophisticated neural networks has allowed for fast progress in every field of computer vision, however, applications where annotated data is prohibited due to privacy or security concerns remain challenging. Federated Learning (FL) offers a promising framework for individuals aiming to collaboratively develop a shared model while preserving data privacy. Nevertheless, our findings reveal that variations in data distribution among clients can profoundly affect FL methodologies, primarily due to instabilities in the aggregation process. We also propose a novel FL framework to mitigate the adverse effects of covariate shifts among federated clients by combining individual parameter pruning and regularization techniques to improve the robustness of individual clients' models to aggregate. Each client's model is optimized through magnitude-based pruning and the addition of dropout and noise injection layers to build more resilient decision pathways in the networks and improve the robustness of the model's parameter aggregation step. The proposed framework is capable of extracting robust representations even in the presence of very large covariate shifts among client data distributions and in the federation of a small number of clients. Empirical findings substantiate the effectiveness of our proposed methodology across common benchmark datasets, including CIFAR10, MNIST, SVHN, and Fashion MNIST. Furthermore, we introduce the CelebA-Gender dataset, specifically designed to evaluate performance on a more realistic domain. The proposed method is capable of extracting robust representations even in the presence of both high and low covariate shifts among client data distributions.

The proliferation of radical content on online platforms poses significant risks, including inciting violence and spreading extremist ideologies. Despite ongoing research, existing datasets and models often fail to address the complexities of multilingual and diverse data. To bridge this gap, we introduce a publicly available multilingual dataset annotated with radicalization levels, calls for action, and named entities in English, French, and Arabic. This dataset is pseudonymized to protect individual privacy while preserving contextual information. Beyond presenting our freely available dataset, we analyze the annotation process, highlighting biases and disagreements among annotators and their implications for model performance. Additionally, we use synthetic data to investigate the influence of socio-demographic traits on annotation patterns and model predictions. Our work offers a comprehensive examination of the challenges and opportunities in building robust datasets for radical content detection, emphasizing the importance of fairness and transparency in model development.

The recent development of foundation models for monocular depth estimation such as Depth Anything paved the way to zero-shot monocular depth estimation. Since it returns an affine-invariant disparity map, the favored technique to recover the metric depth consists in fine-tuning the model. However, this stage is costly to perform because of the training but also due to the creation of the dataset. It must contain images captured by the camera that will be used at test time and the corresponding ground truth. Moreover, the fine-tuning may also degrade the generalizing capacity of the original model. Instead, we propose in this paper a new method to rescale Depth Anything predictions using 3D points provided by low-cost sensors or techniques such as low-resolution LiDAR, stereo camera, structure-from-motion where poses are given by an IMU. Thus, this approach avoids fine-tuning and preserves the generalizing power of the original depth estimation model while being robust to the noise of the sensor or of the depth model. Our experiments highlight improvements relative to other metric depth estimation methods and competitive results compared to fine-tuned approaches. Code available at //gitlab.ensta.fr/ssh/monocular-depth-rescaling.

With the growing importance of smartphones, developers face the challenge of creating separate applications for multiple platforms (e.g., Android, iOS, and HarmonyOS), leading to increased development costs and longer iteration cycles. One potential solution is to develop an app on one platform and then automatically convert it to other platforms, reducing the need for separate development efforts. However, migrating user interfaces (UIs) between platforms is particularly challenging due to significant differences in layout structures and development paradigms, such as the disparity between XML layout files in Android and ArkUI framework in HarmonyOS. Manual conversion of UIs is time-consuming, error-prone, and inefficient, necessitating an automated solution to streamline the process and enable seamless migration from Android to HarmonyOS. To address this challenge, we propose the A2H Converter, an automated tool for migrating Android UIs to HarmonyOS. The tool employs an large language model (LLM)-driven multi-agent framework to convert Android XML layouts into HarmonyOS ArkUI layouts. Using the RAG combing with decision rules, the system maps Android UI components to ArkUI equivalents, while a reflective mechanism continuously improves conversion accuracy. A2H Converter handles project-level layouts, ensuring consistency across multiple files and addressing complex UI logic. Experiments on six Android applications collected from GitHub demonstrate that our A2H Converter achieves a migration success rate of over 90.1\%, 89.3\%, and 89.2\% at the component, page, and project levels, respectively. The demo video is available at. The tool is available at //124.70.54.129:37860/.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

北京阿比特科技有限公司