亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In classical computer vision, rectification is an integral part of multi-view depth estimation. It typically includes epipolar rectification and lens distortion correction. This process simplifies the depth estimation significantly, and thus it has been adopted in CNN approaches. However, rectification has several side effects, including a reduced field of view (FOV), resampling distortion, and sensitivity to calibration errors. The effects are particularly pronounced in case of significant distortion (e.g., wide-angle fisheye cameras). In this paper, we propose a generic scale-aware self-supervised pipeline for estimating depth, euclidean distance, and visual odometry from unrectified monocular videos. We demonstrate a similar level of precision on the unrectified KITTI dataset with barrel distortion comparable to the rectified KITTI dataset. The intuition being that the rectification step can be implicitly absorbed within the CNN model, which learns the distortion model without increasing complexity. Our approach does not suffer from a reduced field of view and avoids computational costs for rectification at inference time. To further illustrate the general applicability of the proposed framework, we apply it to wide-angle fisheye cameras with 190$^\circ$ horizontal field of view. The training framework UnRectDepthNet takes in the camera distortion model as an argument and adapts projection and unprojection functions accordingly. The proposed algorithm is evaluated further on the KITTI rectified dataset, and we achieve state-of-the-art results that improve upon our previous work FisheyeDistanceNet. Qualitative results on a distorted test scene video sequence indicate excellent performance //youtu.be/K6pbx3bU4Ss.

相關內容

We consider the problem of computing the (two-sided) Hausdorff distance between the unit $\ell_{p_{1}}$ and $\ell_{p_{2}}$ norm balls in finite dimensional Euclidean space for $1 \leq p_1 < p_2 \leq \infty$, and derive a closed-form formula for the same. We also derive a closed-form formula for the Hausdorff distance between the $k_1$ and $k_2$ unit $D$-norm balls, which are certain polyhedral norm balls in $d$ dimensions for $1 \leq k_1 < k_2 \leq d$. When two different $\ell_p$ norm balls are transformed via a common linear map, we obtain several estimates for the Hausdorff distance between the resulting convex sets. These estimates upper bound the Hausdorff distance or its expectation, depending on whether the linear map is arbitrary or random. We then generalize the developments for the Hausdorff distance between two set-valued integrals obtained by applying a parametric family of linear maps to different $\ell_p$ unit norm balls, and then taking the Minkowski sums of the resulting sets in a limiting sense. To illustrate an application, we show that the problem of computing the Hausdorff distance between the reach sets of a linear dynamical system with different unit norm ball-valued input uncertainties, reduces to this set-valued integral setting.

Recent works show that the data distribution in a network's latent space is useful for estimating classification uncertainty and detecting Out-of-distribution (OOD) samples. To obtain a well-regularized latent space that is conducive for uncertainty estimation, existing methods bring in significant changes to model architectures and training procedures. In this paper, we present a lightweight, fast, and high-performance regularization method for Mahalanobis distance-based uncertainty prediction, and that requires minimal changes to the network's architecture. To derive Gaussian latent representation favourable for Mahalanobis Distance calculation, we introduce a self-supervised representation learning method that separates in-class representations into multiple Gaussians. Classes with non-Gaussian representations are automatically identified and dynamically clustered into multiple new classes that are approximately Gaussian. Evaluation on standard OOD benchmarks shows that our method achieves state-of-the-art results on OOD detection with minimal inference time, and is very competitive on predictive probability calibration. Finally, we show the applicability of our method to a real-life computer vision use case on microorganism classification.

It has long been an ill-posed problem to predict absolute depth maps from single images in real (unseen) indoor scenes. We observe that it is essentially due to not only the scale-ambiguous problem but also the focal-ambiguous problem that decreases the generalization ability of monocular depth estimation. That is, images may be captured by cameras of different focal lengths in scenes of different scales. In this paper, we develop a focal-and-scale depth estimation model to well learn absolute depth maps from single images in unseen indoor scenes. First, a relative depth estimation network is adopted to learn relative depths from single images with diverse scales/semantics. Second, multi-scale features are generated by mapping a single focal length value to focal length features and concatenating them with intermediate features of different scales in relative depth estimation. Finally, relative depths and multi-scale features are jointly fed into an absolute depth estimation network. In addition, a new pipeline is developed to augment the diversity of focal lengths of public datasets, which are often captured with cameras of the same or similar focal lengths. Our model is trained on augmented NYUDv2 and tested on three unseen datasets. Our model considerably improves the generalization ability of depth estimation by 41%/13% (RMSE) with/without data augmentation compared with five recent SOTAs and well alleviates the deformation problem in 3D reconstruction. Notably, our model well maintains the accuracy of depth estimation on original NYUDv2.

We propose MAMo, a novel memory and attention frame-work for monocular video depth estimation. MAMo can augment and improve any single-image depth estimation networks into video depth estimation models, enabling them to take advantage of the temporal information to predict more accurate depth. In MAMo, we augment model with memory which aids the depth prediction as the model streams through the video. Specifically, the memory stores learned visual and displacement tokens of the previous time instances. This allows the depth network to cross-reference relevant features from the past when predicting depth on the current frame. We introduce a novel scheme to continuously update the memory, optimizing it to keep tokens that correspond with both the past and the present visual information. We adopt attention-based approach to process memory features where we first learn the spatio-temporal relation among the resultant visual and displacement memory tokens using self-attention module. Further, the output features of self-attention are aggregated with the current visual features through cross-attention. The cross-attended features are finally given to a decoder to predict depth on the current frame. Through extensive experiments on several benchmarks, including KITTI, NYU-Depth V2, and DDAD, we show that MAMo consistently improves monocular depth estimation networks and sets new state-of-the-art (SOTA) accuracy. Notably, our MAMo video depth estimation provides higher accuracy with lower latency, when omparing to SOTA cost-volume-based video depth models.

The missing modality issue is critical but non-trivial to be solved by multi-modal models. Current methods aiming to handle the missing modality problem in multi-modal tasks, either deal with missing modalities only during evaluation or train separate models to handle specific missing modality settings. In addition, these models are designed for specific tasks, so for example, classification models are not easily adapted to segmentation tasks and vice versa. In this paper, we propose the Shared-Specific Feature Modelling (ShaSpec) method that is considerably simpler and more effective than competing approaches that address the issues above. ShaSpec is designed to take advantage of all available input modalities during training and evaluation by learning shared and specific features to better represent the input data. This is achieved from a strategy that relies on auxiliary tasks based on distribution alignment and domain classification, in addition to a residual feature fusion procedure. Also, the design simplicity of ShaSpec enables its easy adaptation to multiple tasks, such as classification and segmentation. Experiments are conducted on both medical image segmentation and computer vision classification, with results indicating that ShaSpec outperforms competing methods by a large margin. For instance, on BraTS2018, ShaSpec improves the SOTA by more than 3% for enhancing tumour, 5% for tumour core and 3% for whole tumour.

Despite their importance for assessing reliability of predictions, uncertainty quantification (UQ) measures for machine learning models have only recently begun to be rigorously characterized. One prominent issue is the curse of dimensionality: it is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions. We prove that by tuning hyperparameters to maximize marginal likelihood (the empirical Bayes procedure), the performance, as measured by the marginal likelihood, improves monotonically} with the input dimension. On the other hand, we prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent. Cold posteriors, which have recently attracted interest due to their improved performance in certain settings, appear to exacerbate these phenomena. We verify empirically that our results hold for real data, beyond our considered assumptions, and we explore consequences involving synthetic covariates.

Numerous fields, such as ecology, biology, and neuroscience, use animal recordings to track and measure animal behaviour. Over time, a significant volume of such data has been produced, but some computer vision techniques cannot explore it due to the lack of annotations. To address this, we propose an approach for estimating 2D mouse body pose from unlabelled images using a synthetically generated empirical pose prior. Our proposal is based on a recent self-supervised method for estimating 2D human pose that uses single images and a set of unpaired typical 2D poses within a GAN framework. We adapt this method to the limb structure of the mouse and generate the empirical prior of 2D poses from a synthetic 3D mouse model, thereby avoiding manual annotation. In experiments on a new mouse video dataset, we evaluate the performance of the approach by comparing pose predictions to a manually obtained ground truth. We also compare predictions with those from a supervised state-of-the-art method for animal pose estimation. The latter evaluation indicates promising results despite the lack of paired training data. Finally, qualitative results using a dataset of horse images show the potential of the setting to adapt to other animal species.

Background: Biomedical data are usually collections of longitudinal data assessed at certain points in time. Clinical observations assess the presences and severity of symptoms, which are the basis for description and modeling of disease progression. Deciphering potential underlying unknowns solely from the distinct observation would substantially improve the understanding of pathological cascades. Hidden Markov Models (HMMs) have been successfully applied to the processing of possibly noisy continuous signals. The aim was to improve the application HMMs to multivariate time-series of categorically distributed data. Here, we used HHMs to study prediction of the loss of free walking ability as one major clinical deterioration in the most common autosomal dominantly inherited ataxia disorder worldwide. We used HHMs to investigate the prediction of loss of the ability to walk freely, representing a major clinical deterioration in the most common autosomal-dominant inherited ataxia disorder worldwide. Results: We present a prediction pipeline which processes data paired with a configuration file, enabling to construct, validate and query a fully parameterized HMM-based model. In particular, we provide a theoretical and practical framework for multivariate time-series inference based on HMMs that includes constructing multiple HMMs, each to predict a particular observable variable. Our analysis is done on random data, but also on biomedical data based on Spinocerebellar ataxia type 3 disease. Conclusions: HHMs are a promising approach to study biomedical data that naturally are represented as multivariate time-series. Our implementation of a HHMs framework is publicly available and can easily be adapted for further applications.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司