Understanding toxicity in user conversations is undoubtedly an important problem. Addressing "covert" or implicit cases of toxicity is particularly hard and requires context. Very few previous studies have analysed the influence of conversational context in human perception or in automated detection models. We dive deeper into both these directions. We start by analysing existing contextual datasets and come to the conclusion that toxicity labelling by humans is in general influenced by the conversational structure, polarity and topic of the context. We then propose to bring these findings into computational detection models by introducing and evaluating (a) neural architectures for contextual toxicity detection that are aware of the conversational structure, and (b) data augmentation strategies that can help model contextual toxicity detection. Our results have shown the encouraging potential of neural architectures that are aware of the conversation structure. We have also demonstrated that such models can benefit from synthetic data, especially in the social media domain.
Object permanence is the concept that objects do not suddenly disappear in the physical world. Humans understand this concept at young ages and know that another person is still there, even though it is temporarily occluded. Neural networks currently often struggle with this challenge. Thus, we introduce explicit object permanence into two stage detection approaches drawing inspiration from particle filters. At the core, our detector uses the predictions of previous frames as additional proposals for the current one at inference time. Experiments confirm the feedback loop improving detection performance by a up to 10.3 mAP with little computational overhead. Our approach is suited to extend two-stage detectors for stabilized and reliable detections even under heavy occlusion. Additionally, the ability to apply our method without retraining an existing model promises wide application in real-world tasks.
Deep neural networks for computer vision are deployed in increasingly safety-critical and socially-impactful applications, motivating the need to close the gap in model performance under varied, naturally occurring imaging conditions. Robustness, ambiguously used in multiple contexts including adversarial machine learning, refers here to preserving model performance under naturally-induced image corruptions or alterations. We perform a systematic review to identify, analyze, and summarize current definitions and progress towards non-adversarial robustness in deep learning for computer vision. We find this area of research has received disproportionately less attention relative to adversarial machine learning, yet a significant robustness gap exists that manifests in performance degradation similar in magnitude to adversarial conditions. Toward developing a more transparent definition of robustness, we provide a conceptual framework based on a structural causal model of the data generating process and interpret non-adversarial robustness as pertaining to a model's behavior on corrupted images corresponding to low-probability samples from the unaltered data distribution. We identify key architecture-, data augmentation-, and optimization tactics for improving neural network robustness. This robustness perspective reveals that common practices in the literature correspond to causal concepts. We offer perspectives on how future research may mind this evident and significant non-adversarial robustness gap.
Disfluency, though originating from human spoken utterances, is primarily studied as a uni-modal text-based Natural Language Processing (NLP) task. Based on early-fusion and self-attention-based multimodal interaction between text and acoustic modalities, in this paper, we propose a novel multimodal architecture for disfluency detection from individual utterances. Our architecture leverages a multimodal dynamic fusion network that adds minimal parameters over an existing text encoder commonly used in prior art to leverage the prosodic and acoustic cues hidden in speech. Through experiments, we show that our proposed model achieves state-of-the-art results on the widely used English Switchboard for disfluency detection and outperforms prior unimodal and multimodal systems in literature by a significant margin. In addition, we make a thorough qualitative analysis and show that, unlike text-only systems, which suffer from spurious correlations in the data, our system overcomes this problem through additional cues from speech signals. We make all our codes publicly available on GitHub.
The paper reviews methods that seek to draw causal inference from observational data and demonstrates how they can be applied to empirical problems in engineering research. It presents a framework for causal identification based on the concept of potential outcomes and reviews core contemporary methods that can be used to estimate causal quantities. The paper has two aims: first, to provide a consolidated overview of the statistical literature on causal inference for the data centric engineering community; and second, to illustrate how causal concepts and methods can be applied. The latter aim is achieved through Monte Carlo simulations designed to replicate typical empirical problems encountered in engineering research. R code for the simulations is made available for readers to run and adapt and citations are given to real world studies. Causal inference aims to quantify effects that occur due to explicit intervention (or 'treatment') in non-experimental settings, typically for non-randomly assigned treatments. The paper argues that analyses of engineering interventions are often characterized by such conditions, and consequently, that causal inference has immediate and valuable applicability.
Cyber deception is emerging as a promising approach to defending networks and systems against attackers and data thieves. However, despite being relatively cheap to deploy, the generation of realistic content at scale is very costly, due to the fact that rich, interactive deceptive technologies are largely hand-crafted. With recent improvements in Machine Learning, we now have the opportunity to bring scale and automation to the creation of realistic and enticing simulated content. In this work, we propose a framework to automate the generation of email and instant messaging-style group communications at scale. Such messaging platforms within organisations contain a lot of valuable information inside private communications and document attachments, making them an enticing target for an adversary. We address two key aspects of simulating this type of system: modelling when and with whom participants communicate, and generating topical, multi-party text to populate simulated conversation threads. We present the LogNormMix-Net Temporal Point Process as an approach to the first of these, building upon the intensity-free modeling approach of Shchur et al. to create a generative model for unicast and multi-cast communications. We demonstrate the use of fine-tuned, pre-trained language models to generate convincing multi-party conversation threads. A live email server is simulated by uniting our LogNormMix-Net TPP (to generate the communication timestamp, sender and recipients) with the language model, which generates the contents of the multi-party email threads. We evaluate the generated content with respect to a number of realism-based properties, that encourage a model to learn to generate content that will engage the attention of an adversary to achieve a deception outcome.
Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.
Human-centric perception plays a vital role in vision and graphics. But their data annotations are prohibitively expensive. Therefore, it is desirable to have a versatile pre-train model that serves as a foundation for data-efficient downstream tasks transfer. To this end, we propose the Human-Centric Multi-Modal Contrastive Learning framework HCMoCo that leverages the multi-modal nature of human data (e.g. RGB, depth, 2D keypoints) for effective representation learning. The objective comes with two main challenges: dense pre-train for multi-modality data, efficient usage of sparse human priors. To tackle the challenges, we design the novel Dense Intra-sample Contrastive Learning and Sparse Structure-aware Contrastive Learning targets by hierarchically learning a modal-invariant latent space featured with continuous and ordinal feature distribution and structure-aware semantic consistency. HCMoCo provides pre-train for different modalities by combining heterogeneous datasets, which allows efficient usage of existing task-specific human data. Extensive experiments on four downstream tasks of different modalities demonstrate the effectiveness of HCMoCo, especially under data-efficient settings (7.16% and 12% improvement on DensePose Estimation and Human Parsing). Moreover, we demonstrate the versatility of HCMoCo by exploring cross-modality supervision and missing-modality inference, validating its strong ability in cross-modal association and reasoning.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.