We study hidden-action principal-agent problems with multiple agents. These are problems in which a principal commits to an outcome-dependent payment scheme in order to incentivize some agents to take costly, unobservable actions that lead to favorable outcomes. Previous works on multi-agent problems study models where the principal observes a single outcome determined by the actions of all the agents. Such models considerably limit the contracting power of the principal, since payments can only depend on the joint result of all the agents' actions, and there is no way of paying each agent for their individual result. In this paper, we consider a model in which each agent determines their own individual outcome as an effect of their action only, the principal observes all the individual outcomes separately, and they perceive a reward that jointly depends on all these outcomes. This considerably enhances the principal's contracting capabilities, by allowing them to pay each agent on the basis of their individual result. We analyze the computational complexity of finding principal-optimal contracts, revolving around two newly-introduced properties of principal's rewards, which we call IR-supermodularity and DR-submodularity. Intuitively, the former captures settings with increasing returns, where the rewards grow faster as the agents' effort increases, while the latter models the case of diminishing returns, in which rewards grow slower instead. These two properties naturally model two common real-world phenomena, namely diseconomies and economies of scale. In this paper, we first address basic instances in which the principal knows everything about the agents, and, then, more general Bayesian instances where each agent has their own private type determining their features, such as action costs and how actions stochastically determine individual outcomes.
Modern autonomous driving system is characterized as modular tasks in sequential order, i.e., perception, prediction, and planning. In order to perform a wide diversity of tasks and achieve advanced-level intelligence, contemporary approaches either deploy standalone models for individual tasks, or design a multi-task paradigm with separate heads. However, they might suffer from accumulative errors or deficient task coordination. Instead, we argue that a favorable framework should be devised and optimized in pursuit of the ultimate goal, i.e., planning of the self-driving car. Oriented at this, we revisit the key components within perception and prediction, and prioritize the tasks such that all these tasks contribute to planning. We introduce Unified Autonomous Driving (UniAD), a comprehensive framework up-to-date that incorporates full-stack driving tasks in one network. It is exquisitely devised to leverage advantages of each module, and provide complementary feature abstractions for agent interaction from a global perspective. Tasks are communicated with unified query interfaces to facilitate each other toward planning. We instantiate UniAD on the challenging nuScenes benchmark. With extensive ablations, the effectiveness of using such a philosophy is proven by substantially outperforming previous state-of-the-arts in all aspects. Code and models are public.
Many solid mechanics problems on complex geometries are conventionally solved using discrete boundary methods. However, such an approach can be cumbersome for problems involving evolving domain boundaries due to the need to track boundaries and constant remeshing. In this work, we employ a robust smooth boundary method (SBM) that represents complex geometry implicitly, in a larger and simpler computational domain, as the support of a smooth indicator function. We present the resulting equations for mechanical equilibrium, in which inhomogeneous boundary conditions are replaced by source terms. The resulting mechanical equilibrium problem is semidefinite, making it difficult to solve. In this work, we present a computational strategy for efficiently solving near-singular SBM elasticity problems. We use the block-structured adaptive mesh refinement (BSAMR) method for resolving evolving boundaries appropriately, coupled with a geometric multigrid solver for an efficient solution of mechanical equilibrium. We discuss some of the practical numerical strategies for implementing this method, notably including the importance of grid versus node-centered fields. We demonstrate the solver's accuracy and performance for three representative examples: a) plastic strain evolution around a void, b) crack nucleation and propagation in brittle materials, and c) structural topology optimization. In each case, we show that very good convergence of the solver is achieved, even with large near-singular areas, and that any convergence issues arise from other complexities, such as stress concentrations. We present this framework as a versatile tool for studying a wide variety of solid mechanics problems involving variable geometry.
Reliable localization is crucial for autonomous robots to navigate efficiently and safely. Some navigation methods can plan paths with high localizability (which describes the capability of acquiring reliable localization). By following these paths, the robot can access the sensor streams that facilitate more accurate location estimation results by the localization algorithms. However, most of these methods require prior knowledge and struggle to adapt to unseen scenarios or dynamic changes. To overcome these limitations, we propose a novel approach for localizability-enhanced navigation via deep reinforcement learning in dynamic human environments. Our proposed planner automatically extracts geometric features from 2D laser data that are helpful for localization. The planner learns to assign different importance to the geometric features and encourages the robot to navigate through areas that are helpful for laser localization. To facilitate the learning of the planner, we suggest two techniques: (1) an augmented state representation that considers the dynamic changes and the confidence of the localization results, which provides more information and allows the robot to make better decisions, (2) a reward metric that is capable to offer both sparse and dense feedback on behaviors that affect localization accuracy. Our method exhibits significant improvements in lost rate and arrival rate when tested in previously unseen environments.
Recent work on designing an appropriate distribution of environments has shown promise for training effective generally capable agents. Its success is partly because of a form of adaptive curriculum learning that generates environment instances (or levels) at the frontier of the agent's capabilities. However, such an environment design framework often struggles to find effective levels in challenging design spaces and requires costly interactions with the environment. In this paper, we aim to introduce diversity in the Unsupervised Environment Design (UED) framework. Specifically, we propose a task-agnostic method to identify observed/hidden states that are representative of a given level. The outcome of this method is then utilized to characterize the diversity between two levels, which as we show can be crucial to effective performance. In addition, to improve sampling efficiency, we incorporate the self-play technique that allows the environment generator to automatically generate environments that are of great benefit to the training agent. Quantitatively, our approach, Diversity-induced Environment Design via Self-Play (DivSP), shows compelling performance over existing methods.
Currently decision making is one of the biggest challenges in autonomous driving. This paper introduces a method for safely navigating an autonomous vehicle in highway scenarios by combining deep Q-Networks and insight from control theory. A Deep Q-Network is trained in simulation to serve as a central decision-making unit by proposing targets for a trajectory planner. The generated trajectories in combination with a controller for longitudinal movement are used to execute lane change maneuvers. In order to prove the functionality of this approach it is evaluated on two different highway traffic scenarios. Furthermore, the impact of different state representations on the performance and training process is analyzed. The results show that the proposed system can produce efficient and safe driving behavior.
Standard bandit algorithms that assume continual reallocation of measurement effort are challenging to implement due to delayed feedback and infrastructural/organizational difficulties. Motivated by practical instances involving a handful of reallocation epochs in which outcomes are measured in batches, we develop a new adaptive experimentation framework that can flexibly handle any batch size. Our main observation is that normal approximations universal in statistical inference can also guide the design of scalable adaptive designs. By deriving an asymptotic sequential experiment, we formulate a dynamic program that can leverage prior information on average rewards. State transitions of the dynamic program are differentiable with respect to the sampling allocations, allowing the use of gradient-based methods for planning and policy optimization. We propose a simple iterative planning method, Residual Horizon Optimization, which selects sampling allocations by optimizing a planning objective via stochastic gradient-based methods. Our method significantly improves statistical power over standard adaptive policies, even when compared to Bayesian bandit algorithms (e.g., Thompson sampling) that require full distributional knowledge of individual rewards. Overall, we expand the scope of adaptive experimentation to settings which are difficult for standard adaptive policies, including problems with a small number of reallocation epochs, low signal-to-noise ratio, and unknown reward distributions.
Existing research on merging behavior generally prioritize the application of various algorithms, but often overlooks the fine-grained process and analysis of trajectories. This leads to the neglect of surrounding vehicle matching, the opaqueness of indicators definition, and reproducible crisis. To address these gaps, this paper presents a reproducible approach to merging behavior analysis. Specifically, we outline the causes of subjectivity and irreproducibility in existing studies. Thereafter, we employ lanelet2 High Definition (HD) map to construct a reproducible framework, that minimizes subjectivities, defines standardized indicators, identifies alongside vehicles, and divides scenarios. A comparative macroscopic and microscopic analysis is subsequently conducted. More importantly, this paper adheres to the Reproducible Research concept, providing all the source codes and reproduction instructions. Our results demonstrate that although scenarios with alongside vehicles occur in less than 6% of cases, their characteristics are significantly different from others, and these scenarios are often accompanied by high risk. This paper refines the understanding of merging behavior, raises awareness of reproducible studies, and serves as a watershed moment.
This paper studies a team coordination problem in a graph environment. Specifically, we incorporate "support" action which an agent can take to reduce the cost for its teammate to traverse some edges that have higher costs otherwise. Due to this added feature, the graph traversal is no longer a standard multi-agent path planning problem. To solve this new problem, we propose a novel formulation by posing it as a planning problem in the joint state space: the joint state graph (JSG). Since the edges of JSG implicitly incorporate the support actions taken by the agents, we are able to now optimize the joint actions by solving a standard single-agent path planning problem in JSG. One main drawback of this approach is the curse of dimensionality in both the number of agents and the size of the graph. To improve scalability in graph size, we further propose a hierarchical decomposition method to perform path planning in two levels. We provide complexity analysis as well as a statistical analysis to demonstrate the efficiency of our algorithm.
Multiparty session types (MPST) are a specification and verification framework for distributed message-passing systems. The communication protocol of the system is specified as a global type, from which a collection of local types (local process implementations) is obtained by endpoint projection. A global type is a single disciplining entity for the whole system, specified by one designer that has full knowledge of the communication protocol. On the other hand, distributed systems are often described in terms of their components: a different designer is in charge of providing a subprotocol for each component. The problem of modular specification of global protocols has been addressed in the literature, but the state of the art focuses only on dual input/output compatibility. Our work overcomes this limitation. We propose the first MPST theory of multiparty compositionality for distributed protocol specification that is semantics-preserving, allows the composition of two or more components, and retains full MPST expressiveness. We introduce hybrid types for describing subprotocols interacting with each other, define a novel compatibility relation, explicitly describe an algorithm for composing multiple subprotocols into a well-formed global type, and prove that compositionality preserves projection, thus retaining semantic guarantees, such as liveness and deadlock freedom. Finally, we test our work against real-world case studies and we smoothly extend our novel compatibility to MPST with delegation and explicit connections.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.