The coronavirus pandemic has spread over the past two years in our highly connected and information-dense society. Nonetheless, disseminating accurate and up-to-date information on the spread of this pandemic remains a challenge. In this context, opting for a solution based on conversational artificial intelligence, also known under the name of the chatbot, is proving to be an unavoidable solution, especially since it has already shown its effectiveness in fighting the coronavirus crisis in several countries. This work proposes to design and implement a smart chatbot on the theme of COVID-19, called COVIBOT, which will be useful in the context of Saudi Arabia. COVIBOT is a generative-based contextual chatbot, which is built using machine learning APIs that are offered by the cloud-based Azure Cognitive Services. Two versions of COVIBOT are offered: English and Arabic versions. Use cases of COVIBOT are tested and validated using a scenario-based approach.
Present-day federated learning (FL) systems deployed over edge networks consists of a large number of workers with high degrees of heterogeneity in data and/or computing capabilities, which call for flexible worker participation in terms of timing, effort, data heterogeneity, etc. To satisfy the need for flexible worker participation, we consider a new FL paradigm called "Anarchic Federated Learning" (AFL) in this paper. In stark contrast to conventional FL models, each worker in AFL has the freedom to choose i) when to participate in FL, and ii) the number of local steps to perform in each round based on its current situation (e.g., battery level, communication channels, privacy concerns). However, such chaotic worker behaviors in AFL impose many new open questions in algorithm design. In particular, it remains unclear whether one could develop convergent AFL training algorithms, and if yes, under what conditions and how fast the achievable convergence speed is. Toward this end, we propose two Anarchic Federated Averaging (AFA) algorithms with two-sided learning rates for both cross-device and cross-silo settings, which are named AFA-CD and AFA-CS, respectively. Somewhat surprisingly, we show that, under mild anarchic assumptions, both AFL algorithms achieve the best known convergence rate as the state-of-the-art algorithms for conventional FL. Moreover, they retain the highly desirable {\em linear speedup effect} with respect of both the number of workers and local steps in the new AFL paradigm. We validate the proposed algorithms with extensive experiments on real-world datasets.
We present CAISAR, an open-source platform under active development for the characterization of AI systems' robustness and safety. CAISAR provides a unified entry point for defining verification problems by using WhyML, the mature and expressive language of the Why3 verification platform. Moreover, CAISAR orchestrates and composes state-of-the-art machine learning verification tools which, individually, are not able to efficiently handle all problems but, collectively, can cover a growing number of properties. Our aim is to assist, on the one hand, the V\&V process by reducing the burden of choosing the methodology tailored to a given verification problem, and on the other hand the tools developers by factorizing useful features-visualization, report generation, property description-in one platform. CAISAR will soon be available at //git.frama-c.com/pub/caisar.
The Covid-19 pandemic has caused impressive damages and disruptions in social, economic, and health systems (among others), and posed unprecedented challenges to public health and policy/decision-makers concerning the design and implementation of measures to mitigate its strong negative impacts. The Portuguese health authorities are currently using some decision analysis-like techniques to assess the impact of this pandemic and implementing measures for each county, region, or the whole country. Such decision tools led to some criticism and many stakeholders asked for novel approaches, in particular those having in consideration dynamical changes in the pandemic behavior arising, e.g., from new virus variants or vaccines. A multidisciplinary team formed by researchers of the Covid-19 Committee of Instituto Superior T\'ecnico at Universidade de Lisboa (CCIST analysts team) and medical doctors from the Crisis Office of the Portuguese Medical Association (GCOM experts team) gathered efforts and worked together in order to propose a new tool to help politicians and decision-makers in the combat of the pandemic. This paper presents the main steps and elements, which led to the construction of a pandemic impact assessment composite indicator, applied to the particular case of {\sc{Covid-19}} in Portugal. A multiple criteria approach based on an additive multi-attribute value theory (MAVT) aggregation model was used to construct the pandemic assessment composite indicator (PACI). The parameters of the additive model were built through a sociotechnical co-constructive interactive process between CCIST and GCOM team members. The deck of cards method was the technical tool adopted to help in building the value functions and the assessment of the criteria weights.
Natural language understanding (NLU) has made massive progress driven by large benchmarks, but benchmarks often leave a long tail of infrequent phenomena underrepresented. We reflect on the question: have transfer learning methods sufficiently addressed the poor performance of benchmark-trained models on the long tail? We conceptualize the long tail using macro-level dimensions (e.g., underrepresented genres, topics, etc.), and perform a qualitative meta-analysis of 100 representative papers on transfer learning research for NLU. Our analysis asks three questions: (i) Which long tail dimensions do transfer learning studies target? (ii) Which properties of adaptation methods help improve performance on the long tail? (iii) Which methodological gaps have greatest negative impact on long tail performance? Our answers highlight major avenues for future research in transfer learning for the long tail. Lastly, using our meta-analysis framework, we perform a case study comparing the performance of various adaptation methods on clinical narratives, which provides interesting insights that may enable us to make progress along these future avenues.
The COVID-19 pandemic has brought profound change in the daily lives of a large part of the global population during 2020 and 2021. Such changes were mirrored in aspects such as changes to the overall energy consumption, or long periods of sustained inactivity inside public buildings. At the same time, due to the large proliferation of IoT, sensors and smartphones in the past few years, we are able to monitor such changes to a certain degree over time. In this paper, we focus on the effect of the pandemic on school buildings and certain aspects in the operation of schools. Our study is based on data from a number of school buildings equipped with an IoT infrastructure. The buildings were situated in Greece, a country that faced an extended lockdown during both 2020 and 2021. Our results show that as regards power consumption there is room for energy efficiency improvements since there was significant power consumption during lockdown, and that using other sensor data we can also infer interesting points regarding the buildings and activity during the lockdown.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.
Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence. A diversity of dialogue systems has been designed with the rapid development of deep learning techniques, especially the recent pre-trained language models (PrLMs). Among these studies, the fundamental yet challenging type of task is dialogue comprehension whose role is to teach the machines to read and comprehend the dialogue context before responding. In this paper, we review the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task. We summarize the characteristics and challenges of dialogue comprehension in contrast to plain-text reading comprehension. Then, we discuss three typical patterns of dialogue modeling. In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios. Finally, we highlight the technical advances in recent years and point out the lessons from the empirical analysis and the prospects towards a new frontier of researches.
Most of the internet today is composed of digital media that includes videos and images. With pixels becoming the currency in which most transactions happen on the internet, it is becoming increasingly important to have a way of browsing through this ocean of information with relative ease. YouTube has 400 hours of video uploaded every minute and many million images are browsed on Instagram, Facebook, etc. Inspired by recent advances in the field of deep learning and success that it has gained on various problems like image captioning and, machine translation , word2vec , skip thoughts, etc, we present DeepSeek a natural language processing based deep learning model that allows users to enter a description of the kind of images that they want to search, and in response the system retrieves all the images that semantically and contextually relate to the query. Two approaches are described in the following sections.