Mixtures of classifiers (a.k.a. randomized ensembles) have been proposed as a way to improve robustness against adversarial attacks. However, it has been shown that existing attacks are not well suited for this kind of classifiers. In this paper, we discuss the problem of attacking a mixture in a principled way and introduce two desirable properties of attacks based on a geometrical analysis of the problem (effectiveness and maximality). We then show that existing attacks do not meet both of these properties. Finally, we introduce a new attack called lattice climber attack with theoretical guarantees on the binary linear setting, and we demonstrate its performance by conducting experiments on synthetic and real datasets.
Post-stratification is often used to estimate treatment effects with higher efficiency. However, the majority of existing post-stratification frameworks depend on prior knowledge of the distributions of covariates and assume that the units are classified into post-strata without error. We propose a novel method to determine a proper stratification rule by mapping the covariates into a post-stratification factor (PSF) using predictive regression models. Inspired by the bootstrap aggregating (bagging) method, we utilize the out-of-bag delete-D jackknife to estimate strata boundaries, strata weights, and the variance of the point estimate. Confidence intervals are constructed with these estimators to take into account the additional variability coming from uncertainty in the strata boundaries and weights. Extensive simulations show that our proposed method consistently improves the efficiency of the estimates when the regression models are predictive and tends to be more robust than the regression imputation method.
We consider the split-preconditioned FGMRES method in a mixed precision framework, in which four potentially different precisions can be used for computations with the coefficient matrix, application of the left preconditioner, application of the right preconditioner, and the working precision. Our analysis is applicable to general preconditioners. We obtain bounds on the backward and forward errors in split-preconditioned FGMRES. Our analysis further provides insight into how the various precisions should be chosen; under certain assumptions, a suitable selection guarantees a backward error on the order of the working precision.
Confounder selection, namely choosing a set of covariates to control for confounding between a treatment and an outcome, is arguably the most important step in the design of observational studies. Previous methods, such as Pearl's celebrated back-door criterion, typically require pre-specifying a causal graph, which can often be difficult in practice. We propose an interactive procedure for confounder selection that does not require pre-specifying the graph or the set of observed variables. This procedure iteratively expands the causal graph by finding what we call "primary adjustment sets" for a pair of possibly confounded variables. This can be viewed as inverting a sequence of latent projections of the underlying causal graph. Structural information in the form of primary adjustment sets is elicited from the user, bit by bit, until either a set of covariates are found to control for confounding or it can be determined that no such set exists. We show that if the user correctly specifies the primary adjustment sets in every step, our procedure is both sound and complete.
Permutation tests are widely recognized as robust alternatives to tests based on the normal theory. Random permutation tests have been frequently employed to assess the significance of variables in linear models. Despite their widespread use, existing random permutation tests lack finite-sample and assumption-free guarantees for controlling type I error in partial correlation tests. To address this standing challenge, we develop a conformal test through permutation-augmented regressions, which we refer to as PALMRT. PALMRT not only achieves power competitive with conventional methods but also provides reliable control of type I errors at no more than $2\alpha$ given any targeted level $\alpha$, for arbitrary fixed-designs and error distributions. We confirmed this through extensive simulations. Compared to the cyclic permutation test (CPT), which also offers theoretical guarantees, PALMRT does not significantly compromise power or set stringent requirements on the sample size, making it suitable for diverse biomedical applications. We further illustrate their differences in a long-Covid study where PALMRT validated key findings previously identified using the t-test, while CPT suffered from a drastic loss of power. We endorse PALMRT as a robust and practical hypothesis test in scientific research for its superior error control, power preservation, and simplicity.
Although the pre-training followed by fine-tuning paradigm is used extensively in many fields, there is still some controversy surrounding the impact of pre-training on the fine-tuning process. Currently, experimental findings based on text and image data lack consensus. To delve deeper into the unsupervised pre-training followed by fine-tuning paradigm, we have extended previous research to a new modality: time series. In this study, we conducted a thorough examination of 150 classification datasets derived from the Univariate Time Series (UTS) and Multivariate Time Series (MTS) benchmarks. Our analysis reveals several key conclusions. (i) Pre-training can only help improve the optimization process for models that fit the data poorly, rather than those that fit the data well. (ii) Pre-training does not exhibit the effect of regularization when given sufficient training time. (iii) Pre-training can only speed up convergence if the model has sufficient ability to fit the data. (iv) Adding more pre-training data does not improve generalization, but it can strengthen the advantage of pre-training on the original data volume, such as faster convergence. (v) While both the pre-training task and the model structure determine the effectiveness of the paradigm on a given dataset, the model structure plays a more significant role.
The paper contains approximation guarantees for neural networks that are trained with gradient flow, with error measured in the continuous $L_2(\mathbb{S}^{d-1})$-norm on the $d$-dimensional unit sphere and targets that are Sobolev smooth. The networks are fully connected of constant depth and increasing width. Although all layers are trained, the gradient flow convergence is based on a neural tangent kernel (NTK) argument for the non-convex second but last layer. Unlike standard NTK analysis, the continuous error norm implies an under-parametrized regime, possible by the natural smoothness assumption required for approximation. The typical over-parametrization re-enters the results in form of a loss in approximation rate relative to established approximation methods for Sobolev smooth functions.
The (modern) arbitrary derivative (ADER) approach is a popular technique for the numerical solution of differential problems based on iteratively solving an implicit discretization of their weak formulation. In this work, focusing on an ODE context, we investigate several strategies to improve this approach. Our initial emphasis is on the order of accuracy of the method in connection with the polynomial discretization of the weak formulation. We demonstrate that precise choices lead to higher-order convergences in comparison to the existing literature. Then, we put ADER methods into a Deferred Correction (DeC) formalism. This allows to determine the optimal number of iterations, which is equal to the formal order of accuracy of the method, and to introduce efficient $p$-adaptive modifications. These are defined by matching the order of accuracy achieved and the degree of the polynomial reconstruction at each iteration. We provide analytical and numerical results, including the stability analysis of the new modified methods, the investigation of the computational efficiency, an application to adaptivity and an application to hyperbolic PDEs with a Spectral Difference (SD) space discretization.
In this research work, we propose a high-order time adapted scheme for pricing a coupled system of fixed-free boundary constant elasticity of variance (CEV) model on both equidistant and locally refined space-grid. The performance of our method is substantially enhanced to improve irregularities in the model which are both inherent and induced. Furthermore, the system of coupled PDEs is strongly nonlinear and involves several time-dependent coefficients that include the first-order derivative of the early exercise boundary. These coefficients are approximated from a fourth-order analytical approximation which is derived using a regularized square-root function. The semi-discrete equation for the option value and delta sensitivity is obtained from a non-uniform fourth-order compact finite difference scheme. Fifth-order 5(4) Dormand-Prince time integration method is used to solve the coupled system of discrete equations. Enhancing the performance of our proposed method with local mesh refinement and adaptive strategies enables us to obtain highly accurate solution with very coarse space grids, hence reducing computational runtime substantially. We further verify the performance of our methodology as compared with some of the well-known and better-performing existing methods.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.