The importance of promoting sustainable and environmentally responsible practices is becoming increasingly recognized in all domains, including tourism. The impact of tourism extends beyond its immediate stakeholders and affects passive participants such as the environment, local businesses, and residents. City trips, in particular, offer significant opportunities to encourage sustainable tourism practices by directing travelers towards destinations that minimize environmental impact while providing enriching experiences. Tourism Recommender Systems (TRS) can play a critical role in this. By integrating sustainability features in TRS, travelers can be guided towards destinations that meet their preferences and align with sustainability objectives. This paper investigates how different user interface design elements affect the promotion of sustainable city trip choices. We explore the impact of various features on user decisions, including sustainability labels for transportation modes and their emissions, popularity indicators for destinations, seasonality labels reflecting crowd levels for specific months, and an overall sustainability composite score. Through a user study involving mockups, participants evaluated the helpfulness of these features in guiding them toward more sustainable travel options. Our findings indicate that sustainability labels significantly influence users towards lower-carbon footprint options, while popularity and seasonality indicators guide users to less crowded and more seasonally appropriate destinations. This study emphasizes the importance of providing users with clear and informative sustainability information, which can help them make more sustainable travel choices. It lays the groundwork for future applications that can recommend sustainable destinations in real-time.
The advent of wearable and sensor technologies now leads to functional predictors which are intrinsically infinite dimensional. While the existing approaches for functional data and survival outcomes lean on the well-established Cox model, the proportional hazard (PH) assumption might not always be suitable in real-world applications. Motivated by physiological signals encountered in digital medicine, we develop a more general and flexible functional time-transformation model for estimating the conditional survival function with both functional and scalar covariates. A partially functional regression model is used to directly model the survival time on the covariates through an unknown monotone transformation and a known error distribution. We use Bernstein polynomials to model the monotone transformation function and the smooth functional coefficients. A sieve method of maximum likelihood is employed for estimation. Numerical simulations illustrate a satisfactory performance of the proposed method in estimation and inference. We demonstrate the application of the proposed model through two case studies involving wearable data i) Understanding the association between diurnal physical activity pattern and all-cause mortality based on accelerometer data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and ii) Modelling Time-to-Hypoglycemia events in a cohort of diabetic patients based on distributional representation of continuous glucose monitoring (CGM) data. The results provide important epidemiological insights into the direct association between survival times and the physiological signals and also exhibit superior predictive performance compared to traditional summary based biomarkers in the CGM study.
Adjusting for confounding and imbalance when establishing statistical relationships is an increasingly important task, and causal inference methods have emerged as the most popular tool to achieve this. Causal inference has been developed mainly for scalar outcomes and recently for distributional outcomes. We introduce here a general framework for causal inference when outcomes reside in general geodesic metric spaces, where we draw on a novel geodesic calculus that facilitates scalar multiplication for geodesics and the characterization of treatment effects through the concept of the geodesic average treatment effect. Using ideas from Fr\'echet regression, we develop estimation methods of the geodesic average treatment effect and derive consistency and rates of convergence for the proposed estimators. We also study uncertainty quantification and inference for the treatment effect. Our methodology is illustrated by a simulation study and real data examples for compositional outcomes of U.S. statewise energy source data to study the effect of coal mining, network data of New York taxi trips, where the effect of the COVID-19 pandemic is of interest, and brain functional connectivity network data to study the effect of Alzheimer's disease.
Discrete diffusion models have emerged as powerful tools for high-quality data generation. Despite their success in discrete spaces, such as text generation tasks, the acceleration of discrete diffusion models remains under explored. In this paper, we propose a discrete non-Markov diffusion model, which admits an accelerated reverse sampling for discrete data generation. Our method significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster. Furthermore, we study the transition from finite to infinite step sampling, offering new insights into bridging the gap between discrete and continuous-time processes for discrete diffusion models. Extensive experiments on natural language generation and machine translation tasks demonstrate the superior performance of our method in terms of both generation speed and sample quality compared to existing methods for discrete diffusion models.
Quantum state discrimination is an important problem in many information processing tasks. In this work we are concerned with finding its best possible sample complexity when the states are preprocessed by a quantum channel that is required to be locally differentially private. To that end we provide achievability and converse bounds for different settings. This includes symmetric state discrimination in various regimes and the asymmetric case. On the way, we also prove new sample complexity bounds for the general unconstrained setting. An important tool in this endeavor are new entropy inequalities that we believe to be of independent interest.
Generating event graphs from long documents is challenging due to the inherent complexity of multiple tasks involved such as detecting events, identifying their relationships, and reconciling unstructured input with structured graphs. Recent studies typically consider all events with equal importance, failing to distinguish salient events crucial for understanding narratives. This paper presents CALLMSAE, a CAscading Large Language Model framework for SAlient Event graph generation, which leverages the capabilities of LLMs and eliminates the need for costly human annotations. We first identify salient events by prompting LLMs to generate summaries, from which salient events are identified. Next, we develop an iterative code refinement prompting strategy to generate event relation graphs, removing hallucinated relations and recovering missing edges. Fine-tuning contextualised graph generation models on the LLM-generated graphs outperforms the models trained on CAEVO-generated data. Experimental results on a human-annotated test set show that the proposed method generates salient and more accurate graphs, outperforming competitive baselines.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
The amount of publicly available biomedical literature has been growing rapidly in recent years, yet question answering systems still struggle to exploit the full potential of this source of data. In a preliminary processing step, many question answering systems rely on retrieval models for identifying relevant documents and passages. This paper proposes a weighted cosine distance retrieval scheme based on neural network word embeddings. Our experiments are based on publicly available data and tasks from the BioASQ biomedical question answering challenge and demonstrate significant performance gains over a wide range of state-of-the-art models.