Software intensive systems play a crucial role in most, if not all, aspects of modern society. As such, both their sustainability and their role in supporting sustainable processes, must be realized by design. To this aim, the architecture of software intensive systems should be designed to support sustainability goals; and measured to understand how effectively they do so. In this paper, we present the Sustainability Assessment Framework (SAF) Toolkit -- a set of instruments that support architects and design decision makers in modeling sustainability as a software quality property. The SAF Toolkit is the result of our experience gained in over a decade of cases in collaboration with industrial partners. We illustrate the toolkit with examples stemming from various cases. We extract our lessons learned, and our current research and future plans to extend the SAF Toolkit for further architecture modeling and measurement.
Quantum communication represents a revolutionary advancement over classical information theory, which leverages unique quantum mechanics properties like entanglement to achieve unprecedented capabilities in secure and efficient information transmission. Unlike bits in classical communication, quantum communication utilizes qubits in superposition states, allowing for novel information storage and processing. Entanglement, a key quantum phenomenon, enables advanced protocols with enhanced security and processing power. This paper provides a comprehensive overview of quantum communication, emphasizing the role of entanglement in theoretical foundations, practical protocols, experimental progress, and security implications. It contrasts quantum communications potential applications with classical networks, identifying areas where entanglement offers significant advantages. The paper explores the fundamentals of quantum mechanics in communication, the physical realization of quantum information, and the formation of secure quantum networks through entanglement-based strategies like Quantum Key Distribution (QKD) and teleportation. It addresses the challenges of long-distance quantum communication, the role of quantum repeaters in scaling networks, and the conceptualization of interconnected quantum networks. Additionally, it discusses strides towards the Quantum Internet, Quantum Error-Correcting codes, and quantum cryptographys role in ensuring secure communication. By highlighting the role of entanglement, this paper aims to inspire further research and innovation in secure and efficient information exchange within quantum networks.
Estimating conditional average dose responses (CADR) is an important but challenging problem. Estimators must correctly model the potentially complex relationships between covariates, interventions, doses, and outcomes. In recent years, the machine learning community has shown great interest in developing tailored CADR estimators that target specific challenges. Their performance is typically evaluated against other methods on (semi-) synthetic benchmark datasets. Our paper analyses this practice and shows that using popular benchmark datasets without further analysis is insufficient to judge model performance. Established benchmarks entail multiple challenges, whose impacts must be disentangled. Therefore, we propose a novel decomposition scheme that allows the evaluation of the impact of five distinct components contributing to CADR estimator performance. We apply this scheme to eight popular CADR estimators on four widely-used benchmark datasets, running nearly 1,500 individual experiments. Our results reveal that most established benchmarks are challenging for reasons different from their creators' claims. Notably, confounding, the key challenge tackled by most estimators, is not an issue in any of the considered datasets. We discuss the major implications of our findings and present directions for future research.
Humans and machines interact more frequently than ever and our societies are becoming increasingly hybrid. A consequence of this hybridisation is the degradation of societal trust due to the prevalence of AI-enabled deception. Yet, despite our understanding of the role of trust in AI in the recent years, we still do not have a computational theory to be able to fully understand and explain the role deception plays in this context. This is a problem because while our ability to explain deception in hybrid societies is delayed, the design of AI agents may keep advancing towards fully autonomous deceptive machines, which would pose new challenges to dealing with deception. In this paper we build a timely and meaningful interdisciplinary perspective on deceptive AI and reinforce a 20 year old socio-cognitive perspective on trust and deception, by proposing the development of DAMAS -- a holistic Multi-Agent Systems (MAS) framework for the socio-cognitive modelling and analysis of deception. In a nutshell this paper covers the topic of modelling and explaining deception using AI approaches from the perspectives of Computer Science, Philosophy, Psychology, Ethics, and Intelligence Analysis.
Advances in NERFs have allowed for 3D scene reconstructions and novel view synthesis. Yet, efficiently editing these representations while retaining photorealism is an emerging challenge. Recent methods face three primary limitations: they're slow for interactive use, lack precision at object boundaries, and struggle to ensure multi-view consistency. We introduce IReNe to address these limitations, enabling swift, near real-time color editing in NeRF. Leveraging a pre-trained NeRF model and a single training image with user-applied color edits, IReNe swiftly adjusts network parameters in seconds. This adjustment allows the model to generate new scene views, accurately representing the color changes from the training image while also controlling object boundaries and view-specific effects. Object boundary control is achieved by integrating a trainable segmentation module into the model. The process gains efficiency by retraining only the weights of the last network layer. We observed that neurons in this layer can be classified into those responsible for view-dependent appearance and those contributing to diffuse appearance. We introduce an automated classification approach to identify these neuron types and exclusively fine-tune the weights of the diffuse neurons. This further accelerates training and ensures consistent color edits across different views. A thorough validation on a new dataset, with edited object colors, shows significant quantitative and qualitative advancements over competitors, accelerating speeds by 5x to 500x.
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
In modern software development, Python third-party libraries have become crucial, particularly due to their widespread use in fields such as deep learning and scientific computing. However, the parameters of APIs in third-party libraries often change during evolution, causing compatibility issues for client applications that depend on specific versions. Due to Python's flexible parameter-passing mechanism, different methods of parameter passing can result in different API compatibility. Currently, no tool is capable of automatically detecting and repairing Python API parameter compatibility issues. To fill this gap, we propose PCART, the first to implement a fully automated process from API extraction, code instrumentation, and API mapping establishment, to compatibility assessment, and finally to repair and validation, for solving various types of Python API parameter compatibility issues, i.e., parameter addition, removal, renaming, reordering of parameters, as well as the conversion of positional parameters to keyword parameters. We construct a large-scale benchmark PCBENCH, including 47,478 test cases mutated from 844 parameter-changed APIs of 33 popular Python libraries, to evaluate PCART. The evaluation results show that PCART is effective yet efficient, significantly outperforming existing tools (MLCatchUp and Relancer) and the large language model ChatGPT-4, achieving an F-measure of 96.49% in detecting API parameter compatibility issues and a repair accuracy of 91.36%. The evaluation on 14 real-world Python projects from GitHub further demonstrates that PCART has good practicality. We believe PCART can help programmers reduce the time spent on maintaining Python API updates and facilitate automated Python API compatibility issue repair.
Large Language Models (LLMs) have demonstrated exceptional coding capability. However, as another critical component of programming proficiency, the debugging capability of LLMs remains relatively unexplored. Previous evaluations of LLMs' debugging ability are significantly limited by the risk of data leakage, the scale of the dataset, and the variety of tested bugs. To overcome these deficiencies, we introduce `DebugBench', an LLM debugging benchmark consisting of 4,253 instances. It covers four major bug categories and 18 minor types in C++, Java, and Python. To construct DebugBench, we collect code snippets from the LeetCode community, implant bugs into source data with GPT-4, and assure rigorous quality checks. We evaluate two commercial and four open-source models in a zero-shot scenario. We find that (1) while closed-source models exhibit inferior debugging performance compared to humans, open-source models relatively lower pass rate scores; (2) the complexity of debugging notably fluctuates depending on the bug category; (3) incorporating runtime feedback has a clear impact on debugging performance which is not always helpful. As an extension, we also compare LLM debugging and code generation, revealing a strong correlation between them for closed-source models. These findings will benefit the development of LLMs in debugging.
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.