Continuous-time quantum walks have proven to be an extremely useful framework for the design of several quantum algorithms. Often, the running time of quantum algorithms in this framework is characterized by the quantum hitting time: the time required by the quantum walk to find a vertex of interest with a high probability. In this article, we provide improved upper bounds for the quantum hitting time that can be applied to several CTQW-based quantum algorithms. In particular, we apply our techniques to the glued-trees problem, improving their hitting time upper bound by a polynomial factor: from $O(n^5)$ to $O(n^2\log n)$. Furthermore, our methods also help to exponentially improve the dependence on precision of the continuous-time quantum walk based algorithm to find a marked node on any ergodic, reversible Markov chain by Chakraborty et al. [PRA 102, 022227 (2020)].
We show how to translate a subset of RISC-V machine code compiled from a subset of C to quadratic unconstrained binary optimization (QUBO) models that may be solved by a quantum annealing machine: given a bound $n$, there is input $I$ to a program $P$ such that $P$ runs into a given program state $E$ executing no more than $n$ machine instructions if and only if the QUBO model of $P$ for $n$ evaluates to 0 on $I$. Thus, with more qubits on the machine than variables in the QUBO model, quantum annealing the model reaches 0 (ground) energy in constant time with high probability on some input $I$ that is part of the ground state if and only if $P$ runs into $E$ on $I$ executing no more than $n$ instructions. Translation takes $\mathcal{O}(n^2)$ time effectively turning a quantum annealer into a polynomial-time symbolic execution engine and bounded model checker, eliminating their path and state explosion problems. Here, we take advantage of the fact that any machine instruction may only increase the size of the program state by a constant amount of bits. Translation time comes down from $\mathcal{O}(n^2)$ to $\mathcal{O}(n\cdot|P|)$ if memory consumption of $P$ is bounded by a constant, establishing a linear (quadratic) upper bound on quantum space, in number of qubits on a quantum annealer, in terms of algorithmic time (space) in classical computing. The construction provides a non-relativizing argument for $NP\subseteq BQP$, without violating the optimality of Grover's algorithm, also on gate-model quantum machines, and motivates a temporal and spatial metric of quantum advantage. Our prototypical open-source toolchain translates machine code that runs on real RISC-V hardware to models that can be solved by real quantum annealing hardware, as shown in our experiments.
Unbiased and consistent variance estimators generally do not exist for design-based treatment effect estimators because experimenters never observe more than one potential outcome for any unit. The problem is exacerbated by interference and complex experimental designs. In this paper, we consider variance estimation for linear treatment effect estimators under interference and arbitrary experimental designs. Experimenters must accept conservative estimators in this setting, but they can strive to minimize the conservativeness. We show that this task can be interpreted as an optimization problem in which one aims to find the lowest estimable upper bound of the true variance given one's risk preference and knowledge of the potential outcomes. We characterize the set of admissible bounds in the class of quadratic forms, and we demonstrate that the optimization problem is a convex program for many natural objectives. This allows experimenters to construct less conservative variance estimators, making inferences about treatment effects more informative. The resulting estimators are guaranteed to be conservative regardless of whether the background knowledge used to construct the bound is correct, but the estimators are less conservative if the knowledge is reasonably accurate.
Demonstrating quantum advantage requires experimental implementation of a computational task that is hard to achieve using state-of-the-art classical systems. One approach is to perform sampling from a probability distribution associated with a class of highly entangled many-body wavefunctions. It has been suggested that this approach can be certified with the Linear Cross-Entropy Benchmark (XEB). We critically examine this notion. First, in a "benign" setting where an honest implementation of noisy quantum circuits is assumed, we characterize the conditions under which the XEB approximates the fidelity. Second, in an "adversarial" setting where all possible classical algorithms are considered for comparison, we show that achieving relatively high XEB values does not imply faithful simulation of quantum dynamics. We present an efficient classical algorithm that, with 1 GPU within 2s, yields high XEB values, namely 2-12% of those obtained in experiments. By identifying and exploiting several vulnerabilities of the XEB, we achieve high XEB values without full simulation of quantum circuits. Remarkably, our algorithm features better scaling with the system size than noisy quantum devices for commonly studied random circuit ensembles. To quantitatively explain the success of our algorithm and the limitations of the XEB, we use a theoretical framework in which the average XEB and fidelity are mapped to statistical models. We illustrate the relation between the XEB and the fidelity for quantum circuits in various architectures, with different gate choices, and in the presence of noise. Our results show that XEB's utility as a proxy for fidelity hinges on several conditions, which must be checked in the benign setting but cannot be assumed in the adversarial setting. Thus, the XEB alone has limited utility as a benchmark for quantum advantage. We discuss ways to overcome these limitations.
For an abelian group $H$ acting on the set $[\ell]$, an $(H,\ell)$-lift of a graph $G_0$ is a graph obtained by replacing each vertex by $\ell$ copies, and each edge by a matching corresponding to the action of an element of $H$. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group $H \leqslant \text{Sym}(\ell)$, constant degree $d \ge 3$ and $\epsilon > 0$, we construct explicit $d$-regular expander graphs $G$ obtained from an $(H,\ell)$-lift of a (suitable) base $n$-vertex expander $G_0$ with the following parameters: (i) $\lambda(G) \le 2\sqrt{d-1} + \epsilon$, for any lift size $\ell \le 2^{n^{\delta}}$ where $\delta=\delta(d,\epsilon)$, (ii) $\lambda(G) \le \epsilon \cdot d$, for any lift size $\ell \le 2^{n^{\delta_0}}$ for a fixed $\delta_0 > 0$, when $d \ge d_0(\epsilon)$, or (iii) $\lambda(G) \le \widetilde{O}(\sqrt{d})$, for lift size ``exactly'' $\ell = 2^{\Theta(n)}$. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items $(i)$ and $(ii)$ above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for $2$-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing'" depth-first search traversals. Result $(iii)$ is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion.
We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.
Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.