亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Videos serve as a powerful medium to convey ideas, tell stories, and provide detailed instructions, especially through long-format tutorials. Such tutorials are valuable for learning new skills at one's own pace, yet they can be overwhelming due to their length and dense content. Viewers often seek specific information, like precise measurements or step-by-step execution details, making it essential to extract and summarize key segments efficiently. An intelligent, time-sensitive video assistant capable of summarizing and detecting highlights in long videos is highly sought after. Recent advancements in Multimodal Large Language Models offer promising solutions to develop such an assistant. Our research explores the use of multimodal models to enhance video summarization and step-by-step instruction generation within specific domains. These models need to understand temporal events and relationships among actions across video frames. Our approach focuses on fine-tuning TimeChat to improve its performance in specific domains: cooking and medical procedures. By training the model on domain-specific datasets like Tasty for cooking and MedVidQA for medical procedures, we aim to enhance its ability to generate concise, accurate summaries of instructional videos. We curate and restructure these datasets to create high-quality video-centric instruction data. Our findings indicate that when finetuned on domain-specific procedural data, TimeChat can significantly improve the extraction and summarization of key instructional steps in long-format videos. This research demonstrates the potential of specialized multimodal models to assist with practical tasks by providing personalized, step-by-step guidance tailored to the unique aspects of each domain.

相關內容

Automatic Program Repair (APR) endeavors to autonomously rectify issues within specific projects, which generally encompasses three categories of tasks: bug resolution, new feature development, and feature enhancement. Despite extensive research proposing various methodologies, their efficacy in addressing real issues remains unsatisfactory. It's worth noting that, typically, engineers have design rationales (DR) on solution-planed solutions and a set of underlying reasons-before they start patching code. In open-source projects, these DRs are frequently captured in issue logs through project management tools like Jira. This raises a compelling question: How can we leverage DR scattered across the issue logs to efficiently enhance APR? To investigate this premise, we introduce DRCodePilot, an approach designed to augment GPT-4-Turbo's APR capabilities by incorporating DR into the prompt instruction. Furthermore, given GPT-4's constraints in fully grasping the broader project context and occasional shortcomings in generating precise identifiers, we have devised a feedback-based self-reflective framework, in which we prompt GPT-4 to reconsider and refine its outputs by referencing a provided patch and suggested identifiers. We have established a benchmark comprising 938 issue-patch pairs sourced from two open-source repositories hosted on GitHub and Jira. Our experimental results are impressive: DRCodePilot achieves a full-match ratio that is a remarkable 4.7x higher than when GPT-4 is utilized directly. Additionally, the CodeBLEU scores also exhibit promising enhancements. Moreover, our findings reveal that the standalone application of DR can yield promising increase in the full-match ratio across CodeLlama, GPT-3.5, and GPT-4 within our benchmark suite. We believe that our DRCodePilot initiative heralds a novel human-in-the-loop avenue for advancing the field of APR.

The inference process for large language models is slow and memory-intensive, with one of the most critical bottlenecks being excessive Key-Value (KV) cache accesses. This paper introduces "Double Sparsity," a novel post-training sparse attention technique designed to alleviate this bottleneck by reducing KV cache access. Double Sparsity combines token sparsity, which focuses on utilizing only the important tokens for computing self-attention, with channel sparsity, an approach that uses important feature channels for identifying important tokens. Our key insight is that the pattern of channel sparsity is relatively static, allowing us to use offline calibration to make it efficient at runtime, thereby enabling accurate and efficient identification of important tokens. Moreover, this method can be combined with offloading to achieve significant memory usage reduction. Experimental results demonstrate that Double Sparsity can achieve $\frac{1}{16}$ token and channel sparsity with minimal impact on accuracy across various tasks, including wiki-2 perplexity, key-value retrieval, and long context benchmarks with models including Llama-2-7B, Llama-2-70B, and Mixtral-8x7B. It brings up to a 14.1$\times$ acceleration in attention operations and a 1.9$\times$ improvement in end-to-end inference on GPUs. With offloading, it achieves a decoding speed acceleration of 16.3$\times$ compared to state-of-the-art solutions at a sequence length of 256K. Our code is publicly available at //github.com/andy-yang-1/DoubleSparse.

We propose a general approach to quantitatively assessing the risk and vulnerability of artificial intelligence (AI) systems to biased decisions. The guiding principle of the proposed approach is that any AI algorithm must outperform a random guesser. This may appear trivial, but empirical results from a simplistic sequential decision-making scenario involving roulette games show that sophisticated AI-based approaches often underperform the random guesser by a significant margin. We highlight that modern recommender systems may exhibit a similar tendency to favor overly low-risk options. We argue that this "random guesser test" can serve as a useful tool for evaluating the utility of AI actions, and also points towards increasing exploration as a potential improvement to such systems.

Legal charge prediction, an essential task in legal AI, seeks to assign accurate charge labels to case descriptions, attracting significant recent interest. Existing methods primarily employ diverse neural network structures for modeling case descriptions directly, failing to effectively leverage multi-source external knowledge. We propose a prompt learning framework-based method that simultaneously leverages multi-source heterogeneous external knowledge from a legal knowledge base, a conversational LLM, and related legal articles. Specifically, we match knowledge snippets in case descriptions via the legal knowledge base and encapsulate them into the input through a hard prompt template. Additionally, we retrieve legal articles related to a given case description through contrastive learning, and then obtain factual elements within the case description through a conversational LLM. We fuse the embedding vectors of soft prompt tokens with the encoding vector of factual elements to achieve knowledge-enhanced model forward inference. Experimental results show that our method achieved state-of-the-art results on CAIL-2018, the largest legal charge prediction dataset, and our method has lower data dependency. Case studies also demonstrate our method's strong interpretability.

We develop a generic computational model that can be used effectively for establishing the existence of winning strategies for concrete finite combinatorial games. Our modelling is (equational) logic-based involving advanced techniques from algebraic specification, and it can be executed by equational programming systems such as those from the OBJ-family. We show how this provides a form of experimental mathematics for strategy problems involving combinatorial games.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司