亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a new stochastic primal-dual optimization algorithm for planning in a large discounted Markov decision process with a generative model and linear function approximation. Assuming that the feature map approximately satisfies standard realizability and Bellman-closedness conditions and also that the feature vectors of all state-action pairs are representable as convex combinations of a small core set of state-action pairs, we show that our method outputs a near-optimal policy after a polynomial number of queries to the generative model. Our method is computationally efficient and comes with the major advantage that it outputs a single softmax policy that is compactly represented by a low-dimensional parameter vector, and does not need to execute computationally expensive local planning subroutines in runtime.

相關內容

This paper studies the stochastic optimization for decentralized nonconvex-strongly-concave minimax problem. We propose a simple and efficient algorithm, called Decentralized Recursive gradient descEnt Ascent Method (DREAM), which requires $\mathcal{O}(\kappa^3\epsilon^{-3})$ stochastic first-order oracle (SFO) calls and $\mathcal{O}\big(\kappa^2\epsilon^{-2}/\sqrt{1-\lambda_2(W)}\,\big)$ communication rounds to find an $\epsilon$-stationary point, where $\kappa$ is the condition number and $\lambda_2(W)$ is the second-largest eigenvalue of the gossip matrix $W$. To the best our knowledge, DREAM is the first algorithm whose SFO and communication complexities simultaneously achieve the optimal dependency on $\epsilon$ and $\lambda_2(W)$ for this problem.

We study online convex optimization with constraints consisting of multiple functional constraints and a relatively simple constraint set, such as a Euclidean ball. As enforcing the constraints at each time step through projections is computationally challenging in general, we allow decisions to violate the functional constraints but aim to achieve a low regret and cumulative violation of the constraints over a horizon of $T$ time steps. First-order methods achieve an $\mathcal{O}(\sqrt{T})$ regret and an $\mathcal{O}(1)$ constraint violation, which is the best-known bound under the Slater's condition, but do not take into account the structural information of the problem. Furthermore, the existing algorithms and analysis are limited to Euclidean space. In this paper, we provide an \emph{instance-dependent} bound for online convex optimization with complex constraints obtained by a novel online primal-dual mirror-prox algorithm. Our instance-dependent regret is quantified by the total gradient variation $V_*(T)$ in the sequence of loss functions. The proposed algorithm works in \emph{general} normed spaces and simultaneously achieves an $\mathcal{O}(\sqrt{V_*(T)})$ regret and an $\mathcal{O}(1)$ constraint violation, which is never worse than the best-known $( \mathcal{O}(\sqrt{T}), \mathcal{O}(1) )$ result and improves over previous works that applied mirror-prox-type algorithms for this problem achieving $\mathcal{O}(T^{2/3})$ regret and constraint violation. Finally, our algorithm is computationally efficient, as it only performs mirror descent steps in each iteration instead of solving a general Lagrangian minimization problem.

In this paper, we propose and analyze an adaptive time-stepping fully discrete scheme which possesses the optimal strong convergence order for the stochastic nonlinear Schr\"odinger equation with multiplicative noise. Based on the splitting skill and the adaptive strategy, the $H^1$-exponential integrability of the numerical solution is obtained, which is a key ingredient to derive the strong convergence order. We show that the proposed scheme converges strongly with orders $\frac12$ in time and $2$ in space. To investigate the numerical asymptotic behavior, we establish the large deviation principle for the numerical solution. This is the first result on the study of the large deviation principle for the numerical scheme of stochastic partial differential equations with superlinearly growing drift. And as a byproduct, the error of the masses between the numerical and exact solutions is finally obtained.

We study a fundamental model of online preference aggregation, where an algorithm maintains an ordered list of $n$ elements. An input is a stream of preferred sets $R_1, R_2, \dots, R_t, \dots$. Upon seeing $R_t$ and without knowledge of any future sets, an algorithm has to rerank elements (change the list ordering), so that at least one element of $R_t$ is found near the list front. The incurred cost is a sum of the list update costs (the number of swaps of neighboring list elements) and access costs (position of the first element of $R_t$ on the list). This scenario occurs naturally in applications such as ordering items in an online shop using aggregated preferences of shop customers. The theoretical underpinning of this problem is known as Min-Sum Set Cover. Unlike previous work (Fotakis et al., ICALP 2020, NIPS 2020) that mostly studied the performance of an online algorithm ALG against the static optimal solution (a single optimal list ordering), in this paper, we study an arguably harder variant where the benchmark is the provably stronger optimal dynamic solution OPT (that may also modify the list ordering). In terms of an online shop, this means that the aggregated preferences of its user base evolve with time. We construct a computationally efficient randomized algorithm whose competitive ratio (ALG-to-OPT cost ratio) is $O(r^2)$ and prove the existence of a deterministic $O(r^4)$-competitive algorithm. Here, $r$ is the maximum cardinality of sets $R_t$. This is the first algorithm whose ratio does not depend on $n$: the previously best algorithm for this problem was $O(r^{3/2} \cdot \sqrt{n})$-competitive and $\Omega(r)$ is a lower bound on the performance of any deterministic online algorithm.

We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.

Combinatorial optimization (CO) layers in machine learning (ML) pipelines are a powerful tool to tackle data-driven decision tasks, but they come with two main challenges. First, the solution of a CO problem often behaves as a piecewise constant function of its objective parameters. Given that ML pipelines are typically trained using stochastic gradient descent, the absence of slope information is very detrimental. Second, standard ML losses do not work well in combinatorial settings. A growing body of research addresses these challenges through diverse methods. Unfortunately, the lack of well-maintained implementations slows down the adoption of CO layers. In this paper, building upon previous works, we introduce a probabilistic perspective on CO layers, which lends itself naturally to approximate differentiation and the construction of structured losses. We recover many approaches from the literature as special cases, and we also derive new ones. Based on this unifying perspective, we present InferOpt.jl, an open-source Julia package that 1) allows turning any CO oracle with a linear objective into a differentiable layer, and 2) defines adequate losses to train pipelines containing such layers. Our library works with arbitrary optimization algorithms, and it is fully compatible with Julia's ML ecosystem. We demonstrate its abilities using a pathfinding problem on video game maps as guiding example, as well as three other applications from operations research.

We consider the problem of learning Stochastic Differential Equations of the form $dX_t = f(X_t)dt+\sigma(X_t)dW_t $ from one sample trajectory. This problem is more challenging than learning deterministic dynamical systems because one sample trajectory only provides indirect information on the unknown functions $f$, $\sigma$, and stochastic process $dW_t$ representing the drift, the diffusion, and the stochastic forcing terms, respectively. We propose a method that combines Computational Graph Completion and data adapted kernels learned via a new variant of cross validation. Our approach can be decomposed as follows: (1) Represent the time-increment map $X_t \rightarrow X_{t+dt}$ as a Computational Graph in which $f$, $\sigma$ and $dW_t$ appear as unknown functions and random variables. (2) Complete the graph (approximate unknown functions and random variables) via Maximum a Posteriori Estimation (given the data) with Gaussian Process (GP) priors on the unknown functions. (3) Learn the covariance functions (kernels) of the GP priors from data with randomized cross-validation. Numerical experiments illustrate the efficacy, robustness, and scope of our method.

In cooperative Multi-Agent Planning (MAP), a set of goals has to be achieved by a set of agents. Independently of whether they perform a pre-assignment of goals to agents or they directly search for a solution without any goal assignment, most previous works did not focus on a fair distribution/achievement of goals by agents. This paper adapts well-known fairness schemes to MAP, and introduces two novel approaches to generate cost-aware fair plans. The first one solves an optimization problem to pre-assign goals to agents, and then solves a centralized MAP task using that assignment. The second one consists of a planning-based compilation that allows solving the joint problem of goal assignment and planning while taking into account the given fairness scheme. Empirical results in several standard MAP benchmarks show that these approaches outperform different baselines. They also show that there is no need to sacrifice much plan cost to generate fair plans.

Variational Bayes methods are a scalable estimation approach for many complex state space models. However, existing methods exhibit a trade-off between accurate estimation and computational efficiency. This paper proposes a variational approximation that mitigates this trade-off. This approximation is based on importance densities that have been proposed in the context of efficient importance sampling. By directly conditioning on the observed data, the proposed method produces an accurate approximation to the exact posterior distribution. Because the steps required for its calibration are computationally efficient, the approach is faster than existing variational Bayes methods. The proposed method can be applied to any state space model that has a closed-form measurement density function and a state transition distribution that belongs to the exponential family of distributions. We illustrate the method in numerical experiments with stochastic volatility models and a macroeconomic empirical application using a high-dimensional state space model.

In non-smooth stochastic optimization, we establish the non-convergence of the stochastic subgradient descent (SGD) to the critical points recently called active strict saddles by Davis and Drusvyatskiy. Such points lie on a manifold $M$ where the function $f$ has a direction of second-order negative curvature. Off this manifold, the norm of the Clarke subdifferential of $f$ is lower-bounded. We require two conditions on $f$. The first assumption is a Verdier stratification condition, which is a refinement of the popular Whitney stratification. It allows us to establish a reinforced version of the projection formula of Bolte \emph{et.al.} for Whitney stratifiable functions, and which is of independent interest. The second assumption, termed the angle condition, allows to control the distance of the iterates to $M$. When $f$ is weakly convex, our assumptions are generic. Consequently, generically in the class of definable weakly convex functions, the SGD converges to a local minimizer.

北京阿比特科技有限公司