We propose new linear combinations of compositions of a basic second-order scheme with appropriately chosen coefficients to construct higher order numerical integrators for differential equations. They can be considered as a generalization of extrapolation methods and multi-product expansions. A general analysis is provided and new methods up to order 8 are built and tested. The new approach is shown to reduce the latency problem when implemented in a parallel environment and leads to schemes that are significantly more efficient than standard extrapolation when the linear combination is delayed by a number of steps.
We consider nonlinear solvers for the incompressible, steady (or at a fixed time step for unsteady) Navier-Stokes equations in the setting where partial measurement data of the solution is available. The measurement data is incorporated/assimilated into the solution through a nudging term addition to the the Picard iteration that penalized the difference between the coarse mesh interpolants of the true solution and solver solution, analogous to how continuous data assimilation (CDA) is implemented for time dependent PDEs. This was considered in the paper [Li et al. {\it CMAME} 2023], and we extend the methodology by improving the analysis to be in the $L^2$ norm instead of a weighted $H^1$ norm where the weight depended on the coarse mesh width, and to the case of noisy measurement data. For noisy measurement data, we prove that the CDA-Picard method is stable and convergent, up to the size of the noise. Numerical tests illustrate the results, and show that a very good strategy when using noisy data is to use CDA-Picard to generate an initial guess for the classical Newton iteration.
We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.
Characterizing the solution sets in a problem by closedness under operations is recognized as one of the key aspects of algorithm development, especially in constraint satisfaction. An example from the Boolean satisfiability problem is that the solution set of a Horn conjunctive normal form (CNF) is closed under the minimum operation, and this property implies that minimizing a nonnegative linear function over a Horn CNF can be done in polynomial time. In this paper, we focus on the set of integer points (vectors) in a polyhedron, and study the relation between these sets and closedness under operations from the viewpoint of 2-decomposability. By adding further conditions to the 2-decomposable polyhedra, we show that important classes of sets of integer vectors in polyhedra are characterized by 2-decomposability and closedness under certain operations, and in some classes, by closedness under operations alone. The most prominent result we show is that the set of integer vectors in a unit-two-variable-per-inequality polyhedron can be characterized by closedness under the median and directed discrete midpoint operations, each of these operations was independently considered in constraint satisfaction and discrete convex analysis.
Gaussian processes (GPs) are widely-used tools in spatial statistics and machine learning and the formulae for the mean function and covariance kernel of a GP $T u$ that is the image of another GP $u$ under a linear transformation $T$ acting on the sample paths of $u$ are well known, almost to the point of being folklore. However, these formulae are often used without rigorous attention to technical details, particularly when $T$ is an unbounded operator such as a differential operator, which is common in many modern applications. This note provides a self-contained proof of the claimed formulae for the case of a closed, densely-defined operator $T$ acting on the sample paths of a square-integrable (not necessarily Gaussian) stochastic process. Our proof technique relies upon Hille's theorem for the Bochner integral of a Banach-valued random variable.
Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data, i.e., images, text, and audio. Accordingly, its promising performance has led to the GAN-based adversarial attack methods in the white-box and black-box attack scenarios. The importance of transferable black-box attacks lies in their ability to be effective across different models and settings, more closely aligning with real-world applications. However, it remains challenging to retain the performance in terms of transferable adversarial examples for such methods. Meanwhile, we observe that some enhanced gradient-based transferable adversarial attack algorithms require prolonged time for adversarial sample generation. Thus, in this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples whilst improving the algorithm's efficiency. The main approach is via optimising the training process of the generator parameters. With the functional and characteristic similarity analysis, we introduce a novel gradient editing (GE) mechanism and verify its feasibility in generating transferable samples on various models. Moreover, by exploring the frequency domain information to determine the gradient editing direction, GE-AdvGAN can generate highly transferable adversarial samples while minimizing the execution time in comparison to the state-of-the-art transferable adversarial attack algorithms. The performance of GE-AdvGAN is comprehensively evaluated by large-scale experiments on different datasets, which results demonstrate the superiority of our algorithm. The code for our algorithm is available at: //github.com/LMBTough/GE-advGAN
We analyze and validate the virtual element method combined with a boundary correction similar to the one in [1,2], to solve problems on two dimensional domains with curved boundaries approximated by polygonal domains obtained as the union of squared elements out of a uniform structured mesh, such as the one that naturally arises when the domain is issued from an image. We show, both theoretically and numerically, that resorting to the use of polygonal elements allows to satisfy, for any order, the assumptions required for the stability of the method, thus allowing to fully exploit the potential of higher order methods, the efficiency of which is ensured by a novel static condensation strategy acting on the edges of the decomposition.
Differentially private training algorithms like DP-SGD protect sensitive training data by ensuring that trained models do not reveal private information. An alternative approach, which this paper studies, is to use a sensitive dataset to generate synthetic data that is differentially private with respect to the original data, and then non-privately training a model on the synthetic data. Doing so has several advantages: synthetic data can be reused for other tasks (including for hyper parameter tuning), retained indefinitely, and shared with third parties without sacrificing privacy. However, generating private synthetic data is much harder than training a private model. To improve performance on text data, recent work has utilized public data by starting with a pre-trained generative language model and privately fine-tuning it on sensitive data. This model can be used to sample a DP synthetic dataset. While this strategy seems straightforward, executing it has proven problematic. Previous approaches either show significant performance loss, or have, as we show, critical design flaws. In this paper we demonstrate that a proper training objective along with tuning fewer parameters results in excellent DP synthetic data quality. Our approach is competitive with direct DP-training of downstream classifiers in terms of performance on downstream tasks. Further, we demonstrate that our DP synthetic data is not only useful for downstream classifier training, but also to tune those same models.
We enumerate several classes of pattern-avoiding rectangulations. We establish bijective links with pattern-avoiding permutations, prove that their generating functions are algebraic, and confirm several conjectures by Merino and M\"utze. We also analyze a new class of rectangulations, called whirls, using a generating tree.
Probably one of the most striking examples of the close connections between global optimization processes and statistical physics is the simulated annealing method, inspired by the famous Monte Carlo algorithm devised by Metropolis et al. in the middle of the last century. In this paper we show how the tools of linear kinetic theory allow to describe this gradient-free algorithm from the perspective of statistical physics and how convergence to the global minimum can be related to classical entropy inequalities. This analysis highlight the strong link between linear Boltzmann equations and stochastic optimization methods governed by Markov processes. Thanks to this formalism we can establish the connections between the simulated annealing process and the corresponding mean-field Langevin dynamics characterized by a stochastic gradient descent approach. Generalizations to other selection strategies in simulated annealing that avoid the acceptance-rejection dynamic are also provided.
High order schemes are known to be unstable in the presence of shock discontinuities or under-resolved solution features for nonlinear conservation laws. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi-discrete entropy inequality independently of discretization parameters. This work extends high order entropy stable schemes to the quasi-1D shallow water equations and the quasi-1D compressible Euler equations, which model one-dimensional flows through channels or nozzles with varying width. We introduce new non-symmetric entropy conservative finite volume fluxes for both sets of quasi-1D equations, as well as a generalization of the entropy conservation condition to non-symmetric fluxes. When combined with an entropy stable interface flux, the resulting schemes are high order accurate, conservative, and semi-discretely entropy stable. For the quasi-1D shallow water equations, the resulting schemes are also well-balanced.