Precisely reconstructing and manipulating crumpled cloths is challenging due to the high dimensionality of the cloth model, as well as the limited observation at self-occluded regions. We leverage the recent progress in the field of single-view human body reconstruction to template-based reconstruct the crumpled cloths from their top-view depth observations only, with our proposed sim-real registration protocols. In contrast to previous implicit cloth representations, our reconstruction mesh explicitly indicates the positions and visibilities of the entire cloth mesh vertices, enabling more efficient dual-arm and single-arm target-oriented manipulations. Experiments demonstrate that our template-based reconstruction and target-oriented manipulation (TRTM) system can be applied to daily cloths with similar topologies as our template mesh, but have different shapes, sizes, patterns, and physical properties. Videos, datasets, pre-trained models, and code can be downloaded from our project website: //wenbwa.github.io/TRTM/.
We study functional and concurrent calculi with non-determinism, along with type systems to control resources based on linearity. The interplay between non-determinism and linearity is delicate: careless handling of branches can discard resources meant to be used exactly once. Here we go beyond prior work by considering non-determinism in its standard sense: once a branch is selected, the rest are discarded. Our technical contributions are three-fold. First, we introduce a $\pi$-calculus with non-deterministic choice, governed by session types. Second, we introduce a resource $\lambda$-calculus, governed by intersection types, in which non-determinism concerns fetching of resources from bags. Finally, we connect our two typed non-deterministic calculi via a correct translation.
Detecting misleading patterns in automated diagnostic assistance systems, such as those powered by Artificial Intelligence, is critical to ensuring their reliability, particularly in healthcare. Current techniques for evaluating deep learning models cannot visualize confounding factors at a diagnostic level. Here, we propose a self-conditioned diffusion model termed DiffChest and train it on a dataset of 515,704 chest radiographs from 194,956 patients from multiple healthcare centers in the United States and Europe. DiffChest explains classifications on a patient-specific level and visualizes the confounding factors that may mislead the model. We found high inter-reader agreement when evaluating DiffChest's capability to identify treatment-related confounders, with Fleiss' Kappa values of 0.8 or higher across most imaging findings. Confounders were accurately captured with 11.1% to 100% prevalence rates. Furthermore, our pretraining process optimized the model to capture the most relevant information from the input radiographs. DiffChest achieved excellent diagnostic accuracy when diagnosing 11 chest conditions, such as pleural effusion and cardiac insufficiency, and at least sufficient diagnostic accuracy for the remaining conditions. Our findings highlight the potential of pretraining based on diffusion models in medical image classification, specifically in providing insights into confounding factors and model robustness.
The ability for robotic systems to understand human language and execute grasping actions is a pivotal challenge in the field of robotics. In target-oriented grasping, prior researches achieve matching human textual commands with images of target objects. However, these works are hard to understand complex or flexible instructions. Moreover, these works lack the capability to autonomously assess the feasibility of instructions, leading to blindly execute grasping tasks even there is no target object. In this paper, we introduce a combination model called QwenGrasp, which combines a large vision language model with a 6-DoF grasp network. By leveraging a pre-trained large vision language model, our approach is capable of working in open-world with natural human language environments, accepting complex and flexible instructions. Furthermore, the specialized grasp network ensures the effectiveness of the generated grasp pose. A series of experiments conducted in real world environment show that our method exhibits a superior ability to comprehend human intent. Additionally, when accepting erroneous instructions, our approach has the capability to suspend task execution and provide feedback to humans, improving safety.
Human action recognition still exists many challenging problems such as different viewpoints, occlusion, lighting conditions, human body size and the speed of action execution, although it has been widely used in different areas. To tackle these challenges, the Kinect depth sensor has been developed to record real time depth sequences, which are insensitive to the color of human clothes and illumination conditions. Many methods on recognizing human action have been reported in the literature such as HON4D, HOPC, RBD and HDG, which use the 4D surface normals, pointclouds, skeleton-based model and depth gradients respectively to capture discriminative information from depth videos or skeleton data. In this research project, the performance of four aforementioned algorithms will be analyzed and evaluated using five benchmark datasets, which cover challenging issues such as noise, change of viewpoints, background clutters and occlusions. We also implemented and improved the HDG algorithm, and applied it in cross-view action recognition using the UWA3D Multiview Activity dataset. Moreover, we used different combinations of individual feature vectors in HDG for performance evaluation. The experimental results show that our improvement of HDG outperforms other three state-of-the-art algorithms for cross-view action recognition.
Previous approaches to detecting human anomalies in videos have typically relied on implicit modeling by directly applying the model to video or skeleton data, potentially resulting in inaccurate modeling of motion information. In this paper, we conduct an exploratory study and introduce a new idea called HKVAD (Human Kinematic-inspired Video Anomaly Detection) for video anomaly detection, which involves the explicit use of human kinematic features to detect anomalies. To validate the effectiveness and potential of this perspective, we propose a pilot method that leverages the kinematic features of the skeleton pose, with a specific focus on the walking stride, skeleton displacement at feet level, and neck level. Following this, the method employs a normalizing flow model to estimate density and detect anomalies based on the estimated density. Based on the number of kinematic features used, we have devised three straightforward variant methods and conducted experiments on two highly challenging public datasets, ShanghaiTech and UBnormal. Our method achieves good results with minimal computational resources, validating its effectiveness and potential.
Integrating first-order logic constraints (FOLCs) with neural networks is a crucial but challenging problem since it involves modeling intricate correlations to satisfy the constraints. This paper proposes a novel neural layer, LogicMP, whose layers perform mean-field variational inference over an MLN. It can be plugged into any off-the-shelf neural network to encode FOLCs while retaining modularity and efficiency. By exploiting the structure and symmetries in MLNs, we theoretically demonstrate that our well-designed, efficient mean-field iterations effectively mitigate the difficulty of MLN inference, reducing the inference from sequential calculation to a series of parallel tensor operations. Empirical results in three kinds of tasks over graphs, images, and text show that LogicMP outperforms advanced competitors in both performance and efficiency.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.
Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in an issue-specific manner. We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog system modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model in both pipeline and end-to-end models. We also review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey can shed a light on future research in task-oriented dialog systems.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.