Intent Management Function (IMF) is an integral part of future-generation networks. In recent years, there has been some work on AI-based IMFs that can handle conflicting intents and prioritize the global objective based on apriori definition of the utility function and accorded priorities for competing intents. Some of the earlier works use Multi-Agent Reinforcement Learning (MARL) techniques with AdHoc Teaming (AHT) approaches for efficient conflict handling in IMF. However, the success of such frameworks in real-life scenarios requires them to be flexible to business situations. The intent priorities can change and the utility function, which measures the extent of intent fulfilment, may also vary in definition. This paper proposes a novel mechanism whereby the IMF can generalize to different forms of utility functions and change of intent priorities at run-time without additional training. Such generalization ability, without additional training requirements, would help to deploy IMF in live networks where customer intents and priorities change frequently. Results on the network emulator demonstrate the efficacy of the approach, scalability for new intents, outperforming existing techniques that require additional training to achieve the same degree of flexibility thereby saving cost, and increasing efficiency and adaptability.
From a model-building perspective, we propose a paradigm shift for fitting over-parameterized models. Philosophically, the mindset is to fit models to future observations rather than to the observed sample. Technically, given an imputation method to generate future observations, we fit over-parameterized models to these future observations by optimizing an approximation of the desired expected loss function based on its sample counterpart and an adaptive $\textit{duality function}$. The required imputation method is also developed using the same estimation technique with an adaptive $m$-out-of-$n$ bootstrap approach. We illustrate its applications with the many-normal-means problem, $n < p$ linear regression, and neural network-based image classification of MNIST digits. The numerical results demonstrate its superior performance across these diverse applications. While primarily expository, the paper conducts an in-depth investigation into the theoretical aspects of the topic. It concludes with remarks on some open problems.
Automating data generation with Large Language Models (LLMs) has become increasingly popular. In this work, we investigate the feasibility and effectiveness of LLM-based data generation in the challenging setting of source-grounded information-seeking dialogs, with response attribution, over long documents. Our source texts consist of long and noisy meeting transcripts, adding to the task complexity. Since automating attribution remains difficult, we propose a semi-automatic approach: dialog queries and responses are generated with LLMs, followed by human verification and identification of attribution spans. Using this approach, we created MISeD -- Meeting Information Seeking Dialogs dataset -- a dataset of information-seeking dialogs focused on meeting transcripts. Models finetuned with MISeD demonstrate superior performance compared to off-the-shelf models, even those of larger size. Finetuning on MISeD gives comparable response generation quality to finetuning on fully manual data, while improving attribution quality and reducing time and effort.
Kolmogorov-Arnold Networks (KANs) have very recently been introduced into the world of machine learning, quickly capturing the attention of the entire community. However, KANs have mostly been tested for approximating complex functions or processing synthetic data, while a test on real-world tabular datasets is currently lacking. In this paper, we present a benchmarking study comparing KANs and Multi-Layer Perceptrons (MLPs) on tabular datasets. The study evaluates task performance and training times. From the results obtained on the various datasets, KANs demonstrate superior or comparable accuracy and F1 scores, excelling particularly in datasets with numerous instances, suggesting robust handling of complex data. We also highlight that this performance improvement of KANs comes with a higher computational cost when compared to MLPs of comparable sizes.
Thanks to Deep Neural Networks (DNNs), the accuracy of Keyword Spotting (KWS) has made substantial progress. However, as KWS systems are usually implemented on edge devices, energy efficiency becomes a critical requirement besides performance. Here, we take advantage of spiking neural networks' energy efficiency and propose an end-to-end lightweight KWS model. The model consists of two innovative modules: 1) Global-Local Spiking Convolution (GLSC) module and 2) Bottleneck-PLIF module. Compared to the hand-crafted feature extraction methods, the GLSC module achieves speech feature extraction that is sparser, more energy-efficient, and yields better performance. The Bottleneck-PLIF module further processes the signals from GLSC with the aim to achieve higher accuracy with fewer parameters. Extensive experiments are conducted on the Google Speech Commands Dataset (V1 and V2). The results show our method achieves competitive performance among SNN-based KWS models with fewer parameters.
Recently, there has been a growing trend of utilizing Large Language Model (LLM) to evaluate the quality of other LLMs. Many studies have employed proprietary close-source models, especially GPT-4, as the evaluator. Alternatively, other works have fine-tuned judge models based on open-source LLMs as the evaluator. While the fine-tuned judge models are claimed to achieve comparable evaluation capability with GPT-4, in this study, we conduct an empirical study of judge models. Our findings indicate that although the fine-tuned judge models achieve high performance on in-domain test sets, even surpassing GPT-4, they underperform GPT-4 across several dimensions, including generalizability, fairness, aspect-specific evaluation, and scalability. We also reveal that the fine-tuned judge model inherently operates as a task-specific classifier, consequently imposing the limitations. Finally, we propose an effective indicator to measure the reliability of fine-tuned judges, with the aim of maximizing their utility in LLM evaluation.
In recent years, robotics has evolved, placing robots in social contexts, and giving rise to Human-Robot Interaction (HRI). HRI aims to improve user satisfaction by designing autonomous social robots with user modeling functionalities and user-adapted interactions, storing data on people to achieve personalized interactions. Personality, a vital factor in human interactions, influences temperament, social preferences, and cognitive abilities. Despite much research on personality traits influencing human-robot interactions, little attention has been paid to the influence of the robot's personality on the user model. Personality can influence not only temperament and how people interact with each other but also what they remember about an interaction or the person they interact with. A robot's personality traits could therefore influence what it remembers about the user and thus modify the user model and the consequent interactions. However, no studies investigating such conditioning have been found. This paper addresses this gap by proposing distinct user models that reflect unique robotic personalities, exploring the interplay between individual traits, memory, and social interactions to replicate human-like processes, providing users with more engaging and natural experiences
The Friendship Paradox is a simple and powerful statement about node degrees in a graph (Feld 1991). However, it only applies to undirected graphs with no edge weights, and the only node characteristic it concerns is degree. Since many social networks are more complex than that, it is useful to generalize this phenomenon, if possible, and a number of papers have proposed different generalizations. Here, we unify these generalizations in a common framework, retaining the focus on undirected graphs and allowing for weighted edges and for numeric node attributes other than degree to be considered, since this extension allows for a clean characterization and links to the original concepts most naturally. While the original Friendship Paradox and the Weighted Friendship Paradox hold for all graphs, considering non-degree attributes actually makes the extensions fail around 50% of the time, given random attribute assignment. We provide simple correlation-based rules to see whether an attribute-based version of the paradox holds. In addition to theory, our simulation and data results show how all the concepts can be applied to synthetic and real networks. Where applicable, we draw connections to prior work to make this an accessible and comprehensive paper that lets one understand the math behind the Friendship Paradox and its basic extensions.
Service Function Chain (SFC) provisioning stands as a pivotal technology in the realm of 5G and future networks. Its essence lies in orchestrating VNFs (Virtual Network Functions) in a specified sequence for different types of SFC requests. Efficient SFC provisioning requires fast, reliable, and automatic VNFs' placements, especially in a network where massive amounts of SFC requests are generated having ultra-reliable and low latency communication (URLLC) requirements. Although much research has been done in this area, including Artificial Intelligence (AI) and Machine Learning (ML)-based solutions, this work presents an advanced Deep Reinforcement Learning (DRL)-based simulation model for SFC provisioning that illustrates a realistic environment. The proposed simulation platform can handle massive heterogeneous SFC requests having different characteristics in terms of VNFs chain, bandwidth, and latency constraints. Also, the model is flexible to apply to networks having different configurations in terms of the number of data centers (DCs), logical connections among DCs, and service demands. The simulation model components and the workflow of processing VNFs in the SFC requests are described in detail. Numerical results demonstrate that using this simulation setup and proposed algorithm, a realistic SFC provisioning can be achieved with an optimal SFC acceptance ratio while minimizing the E2E latency and resource consumption.
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science.
Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.