We explore a linear inhomogeneous elasticity equation with random Lam\'e parameters. The latter are parameterized by a countably infinite number of terms in separated expansions. The main aim of this work is to estimate expected values (considered as an infinite dimensional integral on the parametric space corresponding to the random coefficients) of linear functionals acting on the solution of the elasticity equation. To achieve this, the expansions of the random parameters are truncated, a high-order quasi-Monte Carlo (QMC) is combined with a sparse grid approach to approximate the high dimensional integral, and a Galerkin finite element method (FEM) is introduced to approximate the solution of the elasticity equation over the physical domain. The error estimates from (1) truncating the infinite expansion, (2) the Galerkin FEM, and (3) the QMC sparse grid quadrature rule are all studied. For this purpose, we show certain required regularity properties of the continuous solution with respect to both the parametric and physical variables. To achieve our theoretical regularity and convergence results, some reasonable assumptions on the expansions of the random coefficients are imposed. Finally, some numerical results are delivered.
We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.
For the numerical solution of the cubic nonlinear Schr\"{o}dinger equation with periodic boundary conditions, a pseudospectral method in space combined with a filtered Lie splitting scheme in time is considered. This scheme is shown to converge even for initial data with very low regularity. In particular, for data in $H^s(\mathbb T^2)$, where $s>0$, convergence of order $\mathcal O(\tau^{s/2}+N^{-s})$ is proved in $L^2$. Here $\tau$ denotes the time step size and $N$ the number of Fourier modes considered. The proof of this result is carried out in an abstract framework of discrete Bourgain spaces, the final convergence result, however, is given in $L^2$. The stated convergence behavior is illustrated by several numerical examples.
We consider a general family of nonlocal in space and time diffusion equations with space-time dependent diffusivity and prove convergence of finite difference schemes in the context of viscosity solutions under very mild conditions. The proofs, based on regularity properties and compactness arguments on the numerical solution, allow to inherit a number of interesting results for the limit equation. More precisely, assuming H\"older regularity only on the initial condition, we prove convergence of the scheme, space-time H\"older regularity of the solution depending on the fractional orders of the operators, as well as specific blow up rates of the first time derivative. Finally, using the obtained regularity results, we are able to prove orders of convergence of the scheme in some cases. These results are consistent with previous studies. The schemes' performance is further numerically verified using both constructed exact solutions and realistic examples. Our experiments show that multithreaded implementation yields an efficient method to solve nonlocal equations numerically.
Common regularization algorithms for linear regression, such as LASSO and Ridge regression, rely on a regularization hyperparameter that balances the tradeoff between minimizing the fitting error and the norm of the learned model coefficients. As this hyperparameter is scalar, it can be easily selected via random or grid search optimizing a cross-validation criterion. However, using a scalar hyperparameter limits the algorithm's flexibility and potential for better generalization. In this paper, we address the problem of linear regression with l2-regularization, where a different regularization hyperparameter is associated with each input variable. We optimize these hyperparameters using a gradient-based approach, wherein the gradient of a cross-validation criterion with respect to the regularization hyperparameters is computed analytically through matrix differential calculus. Additionally, we introduce two strategies tailored for sparse model learning problems aiming at reducing the risk of overfitting to the validation data. Numerical examples demonstrate that our multi-hyperparameter regularization approach outperforms LASSO, Ridge, and Elastic Net regression. Moreover, the analytical computation of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation, especially when handling a large number of input variables. Application to the identification of over-parameterized Linear Parameter-Varying models is also presented.
We introduce numerical solvers for the steady-state Boltzmann equation based on the symmetric Gauss-Seidel (SGS) method. Due to the quadratic collision operator in the Boltzmann equation, the SGS method requires solving a nonlinear system on each grid cell, and we consider two methods, namely Newton's method and the fixed-point iteration, in our numerical tests. For small Knudsen numbers, our method has an efficiency between the classical source iteration and the modern generalized synthetic iterative scheme, and the complexity of its implementation is closer to the source iteration. A variety of numerical tests are carried out to demonstrate its performance, and it is concluded that the proposed method is suitable for applications with moderate to large Knudsen numbers.
We consider systems of nonlinear magnetostatics and quasistatics that typically arise in the modeling and simulation of electric machines. The nonlinear problems, eventually obtained after time discretization, are usually solved by employing a vector potential formulation. In the relevant two-dimensional setting, a discretization can be obtained by H1-conforming finite elements. We here consider an alternative formulation based on the H-field which leads to a nonlinear saddlepoint problem. After commenting on the unique solvability, we study the numerical approximation by H(curl)-conforming finite elements and present the main convergence results. A particular focus is put on the efficient solution of the linearized systems arising in every step of the nonlinear Newton solver. Via hybridization, the linearized saddlepoint systems can be transformed into linear elliptic problems, which can be solved with similar computational complexity as those arising in the vector or scalar potential formulation. In summary, we can thus claim that the mixed finite element approach based on the $H$-field can be considered a competitive alternative to the standard vector or scalar potential formulations for the solution of problems in nonlinear magneto-quasistatics.
We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.
We consider the task of estimating functions belonging to a specific class of nonsmooth functions, namely so-called tame functions. These functions appear in a wide range of applications: training deep learning, value functions of mixed-integer programs, or wave functions of small molecules. We show that tame functions are approximable by piecewise polynomials on any full-dimensional cube. We then present the first ever mixed-integer programming formulation of piecewise polynomial regression. Together, these can be used to estimate tame functions. We demonstrate promising computational results.
Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry, gave suboptimal conditions for existence of solutions and proposed an $H^2$-conformal finite element method to approximate them. In this paper, the existence of Miura surfaces is studied using a mixed formulation. It is also proved that the constraints propagate from the boundary to the interior of the domain for well-chosen boundary conditions. Then, a numerical method based on a least-squares formulation, Taylor--Hood finite elements and a Newton method is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.
Nonlinear Fokker-Planck equations play a major role in modeling large systems of interacting particles with a proved effectiveness in describing real world phenomena ranging from classical fields such as fluids and plasma to social and biological dynamics. Their mathematical formulation has often to face with physical forces having a significant random component or with particles living in a random environment which characterization may be deduced through experimental data and leading consequently to uncertainty-dependent equilibrium states. In this work, to address the problem of effectively solving stochastic Fokker-Planck systems, we will construct a new equilibrium preserving scheme through a micro-macro approach based on stochastic Galerkin methods. The resulting numerical method, contrarily to the direct application of a stochastic Galerkin projection in the parameter space of the unknowns of the underlying Fokker-Planck model, leads to highly accurate description of the uncertainty dependent large time behavior. Several numerical tests in the context of collective behavior for social and life sciences are presented to assess the validity of the present methodology against standard ones.