This paper investigates an Internet of Things (IoT) system in which multiple devices are observing some object's physical parameters and then offloading their observations back to the BS in time with opportunistic channel access. Specifically, each device accesses the common channel through contention with a certain probability firstly and then the winner evaluates the instant channel condition and decides to accept the right of channel access or not. We analyze this system through the perspective of Age of Information (AoI), which describes the freshness of observed information. The target is to minimize average AoI by optimizing the probability of device participation in contention and the transmission rate threshold. The problem is hard to solve since the AoI expression in fractional form is complex. We first decompose the original problem into two single-variable optimization sub-problems through Dinkelbach method and Block Coordinate Descent (BCD) method. And then we transform them to Monotonic optimization problems by proving the monotonicity of the objective functions, whose global optimal solution is able to be found through Polyblock algorithm. Numerical results verify the validity of our proposed method.
In this paper, we investigate the design of a burst jamming detection method for delay-sensitive Internet-of-Things (IoT) applications. In order to obtain a timely detection of burst jamming, we propose an online principal direction anomaly detection (OPDAD) method. We consider the one-ring scatter channel model, where the base station equipped with a large number of antennas is elevated at a high altitude. In this case, since the angular spread of the legitimate IoT transmitter or the jammer is restricted within a narrow region, there is a distinct difference of the principal direction of the signal space between the jamming attack and the normal state. Unlike existing statistical features based batching methods, the proposed OPDAD method adopts an online iterative processing mode, which can quickly detect the exact attack time block instance by analyzing the newly coming signal. In addition, our detection method does not rely on the prior knowledge of the attacker, because it only cares the abrupt change in the principal direction of the signal space. Moreover, based on the high spatial resolution and the narrow angular spread, we provide the convergence rate estimate and derive a nearly optimal finite sample error bound for the proposed OPDAD method. Numerical results show the excellent real time capability and detection performance of our proposed method.
Accurately extracting driving events is the way to maximize computational efficiency and anomaly detection performance in the tire frictional nose-based anomaly detection task. This study proposes a concise and highly useful method for improving the precision of the event extraction that is hindered by extra noise such as wind noise, which is difficult to characterize clearly due to its randomness. The core of the proposed method is based on the identification of the road friction sound corresponding to the frequency of interest and removing the opposite characteristics with several frequency filters. Our method enables precision maximization of driving event extraction while improving anomaly detection performance by an average of 8.506%. Therefore, we conclude our method is a practical solution suitable for road surface anomaly detection purposes in outdoor edge computing environments.
We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via the Sum-of-Squares method. To establish an information-computation gap for private sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.
In many applications, we want to influence the decisions of independent agents by designing incentives for their actions. We revisit a fundamental problem in this area, called GAME IMPLEMENTATION: Given a game in standard form and a set of desired strategies, can we design a set of payment promises such that if the players take the payment promises into account, then all undominated strategies are desired? Furthermore, we aim to minimize the cost, that is, the worst-case amount of payments. We study the tractability of computing such payment promises and determine more closely what obstructions we may have to overcome in doing so. We show that GAME IMPLEMENTATION is NP-hard even for two players, solving in particular a long open question (Eidenbenz et al. 2011) and suggesting more restrictions are necessary to obtain tractability results. We thus study the regime in which players have only a small constant number of strategies and obtain the following. First, this case remains NP-hard even if each player's utility depends only on three others. Second, we repair a flawed efficient algorithm for the case of both small number of strategies and small number of players. Among further results, we characterize sets of desired strategies that can be implemented at zero cost as a kind of stable core of the game.
Differential private (DP) query and response mechanisms have been widely adopted in various applications based on Internet of Things (IoT) to leverage variety of benefits through data analysis. The protection of sensitive information is achieved through the addition of noise into the query response which hides the individual records in a dataset. However, the noise addition negatively impacts the accuracy which gives rise to privacy-utility trade-off. Moreover, the DP budget or cost $\epsilon$ is often fixed and it accumulates due to the sequential composition which limits the number of queries. Therefore, in this paper, we propose a framework known as optimized privacy-utility trade-off framework for data sharing in IoT (OPU-TF-IoT). Firstly, OPU-TF-IoT uses an adaptive approach to utilize the DP budget $\epsilon$ by considering a new metric of population or dataset size along with the query. Secondly, our proposed heuristic search algorithm reduces the DP budget accordingly whereas satisfying both data owner and data user. Thirdly, to make the utilization of DP budget transparent to the data owners, a blockchain-based verification mechanism is also proposed. Finally, the proposed framework is evaluated using real-world datasets and compared with the traditional DP model and other related state-of-the-art works. The results confirm that our proposed framework not only utilize the DP budget $\epsilon$ efficiently, but it also optimizes the number of queries. Furthermore, the data owners can effectively make sure that their data is shared accordingly through our blockchain-based verification mechanism which encourages them to share their data into the IoT system.
With the booming deployment of Internet of Things, health monitoring applications have gradually prospered. Within the recent COVID-19 pandemic situation, interest in permanent remote health monitoring solutions has raised, targeting to reduce contact and preserve the limited medical resources. Among the technological methods to realize efficient remote health monitoring, federated learning (FL) has drawn particular attention due to its robustness in preserving data privacy. However, FL can yield to high communication costs, due to frequent transmissions between the FL server and clients. To tackle this problem, we propose in this paper a communication-efficient federated learning (CEFL) framework that involves clients clustering and transfer learning. First, we propose to group clients through the calculation of similarity factors, based on the neural networks characteristics. Then, a representative client in each cluster is selected to be the leader of the cluster. Differently from the conventional FL, our method performs FL training only among the cluster leaders. Subsequently, transfer learning is adopted by the leader to update its cluster members with the trained FL model. Finally, each member fine-tunes the received model with its own data. To further reduce the communication costs, we opt for a partial-layer FL aggregation approach. This method suggests partially updating the neural network model rather than fully. Through experiments, we show that CEFL can save up to to 98.45% in communication costs while conceding less than 3% in accuracy loss, when compared to the conventional FL. Finally, CEFL demonstrates a high accuracy for clients with small or unbalanced datasets.
An outfit visualization method generates an image of a person wearing real garments from images of those garments. Current methods can produce images that look realistic and preserve garment identity, captured in details such as collar, cuffs, texture, hem, and sleeve length. However, no current method can both control how the garment is worn -- including tuck or untuck, opened or closed, high or low on the waist, etc.. -- and generate realistic images that accurately preserve the properties of the original garment. We describe an outfit visualization method that controls drape while preserving garment identity. Our system allows instance independent editing of garment drape, which means a user can construct an edit (e.g. tucking a shirt in a specific way) that can be applied to all shirts in a garment collection. Garment detail is preserved by relying on a warping procedure to place the garment on the body and a generator then supplies fine shading detail. To achieve instance independent control, we use control points with garment category-level semantics to guide the warp. The method produces state-of-the-art quality images, while allowing creative ways to style garments, including allowing tops to be tucked or untucked; jackets to be worn open or closed; skirts to be worn higher or lower on the waist; and so on. The method allows interactive control to correct errors in individual renderings too. Because the edits are instance independent, they can be applied to large pools of garments automatically and can be conditioned on garment metadata (e.g. all cropped jackets are worn closed or all bomber jackets are worn closed).
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.