Magnetic particle imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field. From the electric signal measured in receive coils, the particle concentration has to be reconstructed. Due to the ill-posedness of the reconstruction problem, various regularization methods have been proposed for reconstruction ranging from early stopping methods, via classical Tikhonov regularization and iterative methods to modern machine learning approaches. In this work, we contribute to the latter class: we propose a plug-and-play approach based on a generic zero-shot denoiser with an $\ell^1$-prior. Moreover, we develop parameter selection strategies. Finally, we quantitatively and qualitatively evaluate the proposed algorithmic scheme on the 3D Open MPI data set with different levels of preprocessing.
Styled Handwritten Text Generation (HTG) has received significant attention in recent years, propelled by the success of learning-based solutions employing GANs, Transformers, and, preliminarily, Diffusion Models. Despite this surge in interest, there remains a critical yet understudied aspect - the impact of the input, both visual and textual, on the HTG model training and its subsequent influence on performance. This study delves deeper into a cutting-edge Styled-HTG approach, proposing strategies for input preparation and training regularization that allow the model to achieve better performance and generalize better. These aspects are validated through extensive analysis on several different settings and datasets. Moreover, in this work, we go beyond performance optimization and address a significant hurdle in HTG research - the lack of a standardized evaluation protocol. In particular, we propose a standardization of the evaluation protocol for HTG and conduct a comprehensive benchmarking of existing approaches. By doing so, we aim to establish a foundation for fair and meaningful comparisons between HTG strategies, fostering progress in the field.
Packet processing on Linux can be slow due to its complex network stack. To solve this problem, there are two main solutions: eXpress Data Path (XDP) and Data Plane Development Kit (DPDK). XDP and the AF XDP socket offer full interoperability with the legacy system and is being adopted by major internet players like Open vSwitch or Facebook. While the performance evaluation of AF XDP against the legacy protocol stack in the kernel or against DPDK has been studied in the literature, the impact of the multiple socket parameters and the system configuration on its latency has been left aside. To address this, we conduct an experimental study to understand the XDP/AF XDP ecosystem and detect microseconds delays to better architect future latency-sensitive applications. Since the performance of AF XDP depends on multiple parameters found in different layers, finding the configuration minimizing its latency is a challenging task. We rely on a classification algorithm to group the performance results, allowing us to easily identify parameters with the biggest impact on performance at different loads. Last, but not least, we show that some configurations can significantly decrease the benefits of AF XDP, leading to undesirable behaviors, while other configurations are able to reduce such round trip delays to an impressive value of 6.5 $\mu$s in the best case, including the tracing overhead. In summary, AF XDP is a promising solution, and careful selection of both application and socket parameters can significantly improve performance.
In the $\ell_p$-subspace sketch problem, we are given an $n\times d$ matrix $A$ with $n>d$, and asked to build a small memory data structure $Q(A,\epsilon)$ so that, for any query vector $x\in\mathbb{R}^d$, we can output a number in $(1\pm\epsilon)\|Ax\|_p^p$ given only $Q(A,\epsilon)$. This problem is known to require $\tilde{\Omega}(d\epsilon^{-2})$ bits of memory for $d=\Omega(\log(1/\epsilon))$. However, for $d=o(\log(1/\epsilon))$, no data structure lower bounds were known. We resolve the memory required to solve the $\ell_p$-subspace sketch problem for any constant $d$ and integer $p$, showing that it is $\Omega(\epsilon^{-2(d-1)/(d+2p)})$ bits and $\tilde{O} (\epsilon^{-2(d-1)/(d+2p)})$ words. This shows that one can beat the $\Omega(\epsilon^{-2})$ lower bound, which holds for $d = \Omega(\log(1/\epsilon))$, for any constant $d$. We also show how to implement the upper bound in a single pass stream, with an additional multiplicative $\operatorname{poly}(\log \log n)$ factor and an additive $\operatorname{poly}(\log n)$ cost in the memory. Our bounds can be applied to point queries for SVMs with additive error, yielding an optimal bound of $\tilde{\Theta}(\epsilon^{-2d/(d+3)})$ for every constant $d$. This is a near-quadratic improvement over the $\Omega(\epsilon^{-(d+1)/(d+3)})$ lower bound of (Andoni et al. 2020). Our techniques rely on a novel connection to low dimensional techniques from geometric functional analysis.
We prove the first hardness results against efficient proof search by quantum algorithms. We show that under Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no quantum algorithm can weakly automate $\mathbf{TC}^0$-Frege. This extends the line of results of Kraj\'i\v{c}ek and Pudl\'ak (Information and Computation, 1998), Bonet, Pitassi, and Ray (FOCS, 1997), and Bonet et al. (Computational Complexity, 2004), who showed that Extended Frege, $\mathbf{TC}^0$-Frege and $\mathbf{AC}^0$-Frege, respectively, cannot be weakly automated by classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are secure. To the best of our knowledge, this is the first interaction between quantum computation and propositional proof search.
We propose a novel dynamical model for blood alcohol concentration that incorporates $\psi$-Caputo fractional derivatives. Using the generalized Laplace transform technique, we successfully derive an analytic solution for both the alcohol concentration in the stomach and the alcohol concentration in the blood of an individual. These analytical formulas provide us a straightforward numerical scheme, which demonstrates the efficacy of the $\psi$-Caputo derivative operator in achieving a better fit to real experimental data on blood alcohol levels available in the literature. In comparison to existing classical and fractional models found in the literature, our model outperforms them significantly. Indeed, by employing a simple yet non-standard kernel function $\psi(t)$, we are able to reduce the error by more than half, resulting in an impressive gain improvement of 59 percent.
The density weighted average derivative (DWAD) of a regression function is a canonical parameter of interest in economics. Classical first-order large sample distribution theory for kernel-based DWAD estimators relies on tuning parameter restrictions and model assumptions that imply an asymptotic linear representation of the point estimator. These conditions can be restrictive, and the resulting distributional approximation may not be representative of the actual sampling distribution of the statistic of interest. In particular, the approximation is not robust to bandwidth choice. Small bandwidth asymptotics offers an alternative, more general distributional approximation for kernel-based DWAD estimators that allows for, but does not require, asymptotic linearity. The resulting inference procedures based on small bandwidth asymptotics were found to exhibit superior finite sample performance in simulations, but no formal theory justifying that empirical success is available in the literature. Employing Edgeworth expansions, this paper shows that small bandwidth asymptotic approximations lead to inference procedures with higher-order distributional properties that are demonstrably superior to those of procedures based on asymptotic linear approximations.
Autoregressive decoding with generative Large Language Models (LLMs) on accelerators (GPUs/TPUs) is often memory-bound where most of the time is spent on transferring model parameters from high bandwidth memory (HBM) to cache. On the other hand, recent works show that LLMs can maintain quality with significant sparsity/redundancy in the feedforward (FFN) layers by appropriately training the model to operate on a top-$k$ fraction of rows/columns (where $k \approx 0.05$), there by suggesting a way to reduce the transfer of model parameters, and hence latency. However, exploiting this sparsity for improving latency is hindered by the fact that identifying top rows/columns is data-dependent and is usually performed using full matrix operations, severely limiting potential gains. To address these issues, we introduce HiRE (High Recall Approximate Top-k Estimation). HiRE comprises of two novel components: (i) a compression scheme to cheaply predict top-$k$ rows/columns with high recall, followed by full computation restricted to the predicted subset, and (ii) DA-TOP-$k$: an efficient multi-device approximate top-$k$ operator. We demonstrate that on a one billion parameter model, HiRE applied to both the softmax as well as feedforward layers, achieves almost matching pretraining and downstream accuracy, and speeds up inference latency by $1.47\times$ on a single TPUv5e device.
Algorithms for causal discovery have recently undergone rapid advances and increasingly draw on flexible nonparametric methods to process complex data. With these advances comes a need for adequate empirical validation of the causal relationships learned by different algorithms. However, for most real data sources true causal relations remain unknown. This issue is further compounded by privacy concerns surrounding the release of suitable high-quality data. To help address these challenges, we gather a complex dataset comprising measurements from an assembly line in a manufacturing context. This line consists of numerous physical processes for which we are able to provide ground truth causal relationships on the basis of a detailed study of the underlying physics. We use the assembly line data and associated ground truth information to build a system for generation of semisynthetic manufacturing data that supports benchmarking of causal discovery methods. To accomplish this, we employ distributional random forests in order to flexibly estimate and represent conditional distributions that may be combined into joint distributions that strictly adhere to a causal model over the observed variables. The estimated conditionals and tools for data generation are made available in our Python library $\texttt{causalAssembly}$. Using the library, we showcase how to benchmark several well-known causal discovery algorithms.
Subatomic particle track reconstruction (tracking) is a vital task in High-Energy Physics experiments. Tracking is exceptionally computationally challenging and fielded solutions, relying on traditional algorithms, do not scale linearly. Machine Learning (ML) assisted solutions are a promising answer. We argue that a complexity-reduced problem description and the data representing it, will facilitate the solution exploration workflow. We provide the REDuced VIrtual Detector (REDVID) as a complexity-reduced detector model and particle collision event simulator combo. REDVID is intended as a simulation-in-the-loop, to both generate synthetic data efficiently and to simplify the challenge of ML model design. The fully parametric nature of our tool, with regards to system-level configuration, while in contrast to physics-accurate simulations, allows for the generation of simplified data for research and education, at different levels. Resulting from the reduced complexity, we showcase the computational efficiency of REDVID by providing the computational cost figures for a multitude of simulation benchmarks. As a simulation and a generative tool for ML-assisted solution design, REDVID is highly flexible, reusable and open-source. Reference data sets generated with REDVID are publicly available. Data generated using REDVID has enabled rapid development of multiple novel ML model designs, which is currently ongoing.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.