Street Scene Semantic Understanding (denoted as TriSU) is a complex task for autonomous driving (AD). However, inference model trained from data in a particular geographical region faces poor generalization when applied in other regions due to inter-city data domain-shift. Hierarchical Federated Learning (HFL) offers a potential solution for improving TriSU model generalization by collaborative privacy-preserving training over distributed datasets from different cities. Unfortunately, it suffers from slow convergence because data from different cities are with disparate statistical properties. Going beyond existing HFL methods, we propose a Gaussian heterogeneous HFL algorithm (FedGau) to address inter-city data heterogeneity so that convergence can be accelerated. In the proposed FedGau algorithm, both single RGB image and RGB dataset are modelled as Gaussian distributions for aggregation weight design. This approach not only differentiates each RGB image by respective statistical distribution, but also exploits the statistics of dataset from each city in addition to the conventionally considered data volume. With the proposed approach, the convergence is accelerated by 35.5\%-40.6\% compared to existing state-of-the-art (SOTA) HFL methods. On the other hand, to reduce the involved communication resource, we further introduce a novel performance-aware adaptive resource scheduling (AdapRS) policy. Unlike the traditional static resource scheduling policy that exchanges a fixed number of models between two adjacent aggregations, AdapRS adjusts the number of model aggregation at different levels of HFL so that unnecessary communications are minimized. Extensive experiments demonstrate that AdapRS saves 29.65\% communication overhead compared to conventional static resource scheduling policy while maintaining almost the same performance.
Foundational Vision-Language models such as CLIP have exhibited impressive generalization in downstream tasks. However, CLIP suffers from a two-level misalignment issue, i.e., task misalignment and data misalignment, when adapting to specific tasks. Soft prompt tuning has mitigated the task misalignment, yet the data misalignment remains a challenge. To analyze the impacts of the data misalignment, we revisit the pre-training and adaptation processes of CLIP and develop a structural causal model. We discover that while we expect to capture task-relevant information for downstream tasks accurately, the task-irrelevant knowledge impacts the prediction results and hampers the modeling of the true relationships between the images and the predicted classes. As task-irrelevant knowledge is unobservable, we leverage the front-door adjustment and propose Causality-Guided Semantic Decoupling and Classification (CDC) to mitigate the interference of task-irrelevant knowledge. Specifically, we decouple semantics contained in the data of downstream tasks and perform classification based on each semantic. Furthermore, we employ the Dempster-Shafer evidence theory to evaluate the uncertainty of each prediction generated by diverse semantics. Experiments conducted in multiple different settings have consistently demonstrated the effectiveness of CDC.
Self-supervised learning (SSL) offers a powerful way to learn robust, generalizable representations without labeled data. In music, where labeled data is scarce, existing SSL methods typically use generated supervision and multi-view redundancy to create pretext tasks. However, these approaches often produce entangled representations and lose view-specific information. We propose a novel self-supervised multi-view learning framework for audio designed to incentivize separation between private and shared representation spaces. A case study on audio disentanglement in a controlled setting demonstrates the effectiveness of our method.
In Industry 4.0 systems, a considerable number of resource-constrained Industrial Internet of Things (IIoT) devices engage in frequent data interactions due to the necessity for model training, which gives rise to concerns pertaining to security and privacy. In order to address these challenges, this paper considers a digital twin (DT) and blockchain-assisted federated learning (FL) scheme. To facilitate the FL process, we initially employ fog devices with abundant computational capabilities to generate DT for resource-constrained edge devices, thereby aiding them in local training. Subsequently, we formulate an FL delay minimization problem for FL, which considers both of model transmission time and synchronization time, also incorporates cooperative jamming to ensure secure synchronization of DT. To address this non-convex optimization problem, we propose a decomposition algorithm. In particular, we introduce upper limits on the local device training delay and the effects of aggregation jamming as auxiliary variables, thereby transforming the problem into a convex optimization problem that can be decomposed for independent solution. Finally, a blockchain verification mechanism is employed to guarantee the integrity of the model uploading throughout the FL process and the identities of the participants. The final global model is obtained from the verified local and global models within the blockchain through the application of deep learning techniques. The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis, which demonstrates that the integrated DT blockchain-assisted FL scheme significantly outperforms the benchmark schemes in terms of execution time, block optimization, and accuracy.
In this paper, we explore a multi-task semantic communication (SemCom) system for distributed sources, extending the existing focus on collaborative single-task execution. We build on the cooperative multi-task processing introduced in [1], which divides the encoder into a common unit (CU) and multiple specific units (SUs). While earlier studies in multi-task SemCom focused on full observation settings, our research explores a more realistic case where only distributed partial observations are available, such as in a production line monitored by multiple sensing nodes. To address this, we propose an SemCom system that supports multi-task processing through cooperation on the transmitter side via split structure and collaboration on the receiver side. We have used an information-theoretic perspective with variational approximations for our end-to-end data-driven approach. Simulation results demonstrate that the proposed cooperative and collaborative multi-task (CCMT) SemCom system significantly improves task execution accuracy, particularly in complex datasets, if the noise introduced from the communication channel is not limiting the task performance too much. Our findings contribute to a more general SemCom framework capable of handling distributed sources and multiple tasks simultaneously, advancing the applicability of SemCom systems in real-world scenarios.
This work presents a low-rank tensor model for multi-dimensional Markov chains. A common approach to simplify the dynamical behavior of a Markov chain is to impose low-rankness on the transition probability matrix. Inspired by the success of these matrix techniques, we present low-rank tensors for representing transition probabilities on multi-dimensional state spaces. Through tensor decomposition, we provide a connection between our method and classical probabilistic models. Moreover, our proposed model yields a parsimonious representation with fewer parameters than matrix-based approaches. Unlike these methods, which impose low-rankness uniformly across all states, our tensor method accounts for the multi-dimensionality of the state space. We also propose an optimization-based approach to estimate a Markov model as a low-rank tensor. Our optimization problem can be solved by the alternating direction method of multipliers (ADMM), which enjoys convergence to a stationary solution. We empirically demonstrate that our tensor model estimates Markov chains more efficiently than conventional techniques, requiring both fewer samples and parameters. We perform numerical simulations for both a synthetic low-rank Markov chain and a real-world example with New York City taxi data, showcasing the advantages of multi-dimensionality for modeling state spaces.
We show through numerical simulation that the Quantum Approximate Optimization Algorithm (QAOA) for higher-order, random-coefficient, heavy-hex compatible spin glass Ising models has strong parameter concentration across problem sizes from $16$ up to $127$ qubits for $p=1$ up to $p=5$, which allows for straight-forward transfer learning of QAOA angles on instance sizes where exhaustive grid-search is prohibitive even for $p>1$. We use Matrix Product State (MPS) simulation at different bond dimensions to obtain confidence in these results, and we obtain the optimal solutions to these combinatorial optimization problems using CPLEX. In order to assess the ability of current noisy quantum hardware to exploit such parameter concentration, we execute short-depth QAOA circuits (with a CNOT depth of 6 per $p$, resulting in circuits which contain $1420$ two qubit gates for $127$ qubit $p=5$ QAOA) on $100$ higher-order (cubic term) Ising models on IBM quantum superconducting processors with $16, 27, 127$ qubits using QAOA angles learned from a single $16$-qubit instance. We show that (i) the best quantum processors generally find lower energy solutions up to $p=3$ for 27 qubit systems and up to $p=2$ for 127 qubit systems and are overcome by noise at higher values of $p$, (ii) the best quantum processors find mean energies that are about a factor of two off from the noise-free numerical simulation results. Additional insights from our experiments are that large performance differences exist among different quantum processors even of the same generation and that dynamical decoupling significantly improve performance for some, but decrease performance for other quantum processors. Lastly we show $p=1$ QAOA angle mean energy landscapes computed using up to a $414$ qubit quantum computer, showing that the mean QAOA energy landscapes remain very similar as the problem size changes.
A wide variety of queueing systems can be naturally modeled as infinite-state Markov Decision Processes (MDPs). In the reinforcement learning (RL) context, a variety of algorithms have been developed to learn and optimize these MDPs. At the heart of many popular policy-gradient based learning algorithms, such as natural actor-critic, TRPO, and PPO, lies the Natural Policy Gradient (NPG) policy optimization algorithm. Convergence results for these RL algorithms rest on convergence results for the NPG algorithm. However, all existing results on the convergence of the NPG algorithm are limited to finite-state settings. We study a general class of queueing MDPs, and prove a $O(1/\sqrt{T})$ convergence rate for the NPG algorithm, if the NPG algorithm is initialized with the MaxWeight policy. This is the first convergence rate bound for the NPG algorithm for a general class of infinite-state average-reward MDPs. Moreover, our result applies to a beyond the queueing setting to any countably-infinite MDP satisfying certain mild structural assumptions, given a sufficiently good initial policy. Key to our result are state-dependent bounds on the relative value function achieved by the iterate policies of the NPG algorithm.
Amplification by subsampling is one of the main primitives in machine learning with differential privacy (DP): Training a model on random batches instead of complete datasets results in stronger privacy. This is traditionally formalized via mechanism-agnostic subsampling guarantees that express the privacy parameters of a subsampled mechanism as a function of the original mechanism's privacy parameters. We propose the first general framework for deriving mechanism-specific guarantees, which leverage additional information beyond these parameters to more tightly characterize the subsampled mechanism's privacy. Such guarantees are of particular importance for privacy accounting, i.e., tracking privacy over multiple iterations. Overall, our framework based on conditional optimal transport lets us derive existing and novel guarantees for approximate DP, accounting with R\'enyi DP, and accounting with dominating pairs in a unified, principled manner. As an application, we analyze how subsampling affects the privacy of groups of multiple users. Our tight mechanism-specific bounds outperform tight mechanism-agnostic bounds and classic group privacy results.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.