亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose the generalized mixed reduced rank regression method, GMR$^3$ for short. GMR$^3$ is a regression method for a mix of numeric, binary and ordinal response variables. The predictor variables can be a mix of binary, nominal, ordinal, and numeric variables. For dealing with the categorical predictors we use optimal scaling. A majorization-minimization algorithm is derived for maximum likelihood estimation under a local independence assumption. We discuss in detail model selection for the dimensionality or rank, and the selection of predictor variables. We show an application of GMR$^3$ using the Eurobarometer Surveys data set of 2023.

相關內容

The task of sampling from a probability density can be approached as transporting a tractable density function to the target, known as dynamical measure transport. In this work, we tackle it through a principled unified framework using deterministic or stochastic evolutions described by partial differential equations (PDEs). This framework incorporates prior trajectory-based sampling methods, such as diffusion models or Schr\"odinger bridges, without relying on the concept of time-reversals. Moreover, it allows us to propose novel numerical methods for solving the transport task and thus sampling from complicated targets without the need for the normalization constant or data samples. We employ physics-informed neural networks (PINNs) to approximate the respective PDE solutions, implying both conceptional and computational advantages. In particular, PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently, leading to significantly better mode coverage in the sampling task compared to alternative methods. Moreover, they can readily be fine-tuned with Gauss-Newton methods to achieve high accuracy in sampling.

Neural network representations of simple models, such as linear regression, are being studied increasingly to better understand the underlying principles of deep learning algorithms. However, neural representations of distributional regression models, such as the Cox model, have received little attention so far. We close this gap by proposing a framework for distributional regression using inverse flow transformations (DRIFT), which includes neural representations of the aforementioned models. We empirically demonstrate that the neural representations of models in DRIFT can serve as a substitute for their classical statistical counterparts in several applications involving continuous, ordered, time-series, and survival outcomes. We confirm that models in DRIFT empirically match the performance of several statistical methods in terms of estimation of partial effects, prediction, and aleatoric uncertainty quantification. DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.

Tackling the problem of learning probabilistic classifiers from incomplete data in the context of Knowledge Graphs expressed in Description Logics, we describe an inductive approach based on learning simple belief networks. Specifically, we consider a basic probabilistic model, a Naive Bayes classifier, based on multivariate Bernoullis and its extension to a two-tier network in which this classification model is connected to a lower layer consisting of a mixture of Bernoullis. We show how such models can be converted into (probabilistic) axioms (or rules) thus ensuring more interpretability. Moreover they may be also initialized exploiting expert knowledge. We present and discuss the outcomes of an empirical evaluation which aimed at testing the effectiveness of the models on a number of random classification problems with different ontologies.

Markov Decision Process (MDP) is a common mathematical model for sequential decision-making problems. In this paper, we present a new geometric interpretation of MDP, which is useful for analyzing the dynamics of main MDP algorithms. Based on this interpretation, we demonstrate that MDPs can be split into equivalence classes with indistinguishable algorithm dynamics. The related normalization procedure allows for the design of a new class of MDP-solving algorithms that find optimal policies without computing policy values.

Simultaneous interpretation (SI), the translation of one language to another in real time, starts translation before the original speech has finished. Its evaluation needs to consider both latency and quality. This trade-off is challenging especially for distant word order language pairs such as English and Japanese. To handle this word order gap, interpreters maintain the word order of the source language as much as possible to keep up with original language to minimize its latency while maintaining its quality, whereas in translation reordering happens to keep fluency in the target language. This means outputs synchronized with the source language are desirable based on the real SI situation, and it's a key for further progress in computational SI and simultaneous machine translation (SiMT). In this work, we propose an automatic evaluation metric for SI and SiMT focusing on word order synchronization. Our evaluation metric is based on rank correlation coefficients, leveraging cross-lingual pre-trained language models. Our experimental results on NAIST-SIC-Aligned and JNPC showed our metrics' effectiveness to measure word order synchronization between source and target language.

The dynamic set cover problem has been subject to growing research attention in recent years. In this problem, we are given as input a dynamic universe of at most $n$ elements and a fixed collection of $m$ sets, where each element appears in a most $f$ sets and the cost of each set is in $[1/C, 1]$, and the goal is to efficiently maintain an approximate minimum set cover under element updates. Two algorithms that dynamize the classic greedy algorithm are known, providing $O(\log n)$ and $((1+\epsilon)\ln n)$-approximation with amortized update times $O(f \log n)$ and $O(\frac{f \log n}{\epsilon^5})$, respectively [GKKP (STOC'17); SU (STOC'23)]. The question of whether one can get approximation $O(\log n)$ (or even worse) with low worst-case update time has remained open -- only the naive $O(f \cdot n)$ time bound is known, even for unweighted instances. In this work we devise the first amortized greedy algorithm that is amenable to an efficient deamortization, and also develop a lossless deamortization approach suitable for the set cover problem, the combination of which yields a $((1+\epsilon)\ln n)$-approximation algorithm with a worst-case update time of $O(\frac{f\log n}{\epsilon^2})$. Our worst-case time bound -- the first to break the naive $O(f \cdot n)$ bound -- matches the previous best amortized bound, and actually improves its $\epsilon$-dependence. Further, to demonstrate the applicability of our deamortization approach, we employ it, in conjunction with the primal-dual amortized algorithm of [BHN (FOCS'19)], to obtain a $((1+\epsilon)f)$-approximation algorithm with a worst-case update time of $O(\frac{f\log n}{\epsilon^2})$, improving over the previous best bound of $O(\frac{f \cdot \log^2(Cn)}{\epsilon^3})$ [BHNW (SODA'21)]. Finally, as direct implications of our results for set cover, we [...]

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司