Although large language models (LLMs) have advanced the state-of-the-art in NLP significantly, deploying them for downstream applications is still challenging due to cost, responsiveness, control, or concerns around privacy and security. As such, trainable models are still the preferred option in some cases. However, these models still require human-labeled data for optimal performance, which is expensive and time-consuming to obtain. In order to address this issue, several techniques to reduce human effort involve labeling or generating data using LLMs. Although these methods are effective for certain applications, in practice they encounter difficulties in real-world scenarios. Labeling data requires careful data selection, while generating data necessitates task-specific prompt engineering. In this paper, we propose a unified data creation pipeline that requires only a single formatting example, and which is applicable to a broad range of tasks, including traditionally problematic ones with semantically devoid label spaces. In our experiments we demonstrate that instruction-following LLMs are highly cost-effective data creators, and that models trained with these data exhibit performance better than those trained with human-labeled data (by up to 17.5%) on out-of-distribution evaluation, while maintaining comparable performance on in-distribution tasks. These results have important implications for the robustness of NLP systems deployed in the real-world.
Despite the remarkable performance of large language models (LLMs) in recent NLP tasks, their deployment poses substantial challenges due to high computational and memory demands. Recent research has concentrated on improving open-source smaller models through knowledge distillation from LLMs to reduce computational resource costs with promising outcomes. Nevertheless, they frequently fall short of attaining LLM-level performance, particularly in tasks demanding advanced reasoning. In this work, we introduce the \textbf{Mixed Distillation} framework, which capitalizes on the strengths of Program-of-Thought (PoT) and Chain-of-Thought (CoT) capabilities within LLMs and distills these capabilities to smaller models. Regarding these two capabilities, the PoT is dedicated to enhancing the performance of reasoning results generated by smaller models, while CoT simultaneously optimizes the results. Our Mixed Distillation framework offers a promising approach to enhance the capabilities of smaller models, bridging the gap with LLMs, and demonstrating better performance across various tasks. Specifically, on the SVAMP dataset, employing a 7 billion parameter Llama2 and CodeLlama in a mixed distillation framework not only boosts distillation capabilities beyond single-path distillation methods but also outperforms the LLM (GPT-3.5-turbo) in terms of reasoning accuracy. Through sampling in multiple-path reasoning, the models achieve impressive accuracy performances of 85% and 85.5%, respectively, signifying advancements over previous distillation methods.
Using a novel professional certification survey, the study focuses on assessing the vocational skills of two highly cited AI models, GPT-3 and Turbo-GPT3.5. The approach emphasizes the importance of practical readiness over academic performance by examining the models' performances on a benchmark dataset consisting of 1149 professional certifications. This study also includes a comparison with human test scores, providing perspective on the potential of AI models to match or even surpass human performance in professional certifications. GPT-3, even without any fine-tuning or exam preparation, managed to achieve a passing score (over 70% correct) on 39% of the professional certifications. It showcased proficiency in computer-related fields, including cloud and virtualization, business analytics, cybersecurity, network setup and repair, and data analytics. Turbo-GPT3.5, on the other hand, scored a perfect 100% on the highly regarded Offensive Security Certified Professional (OSCP) exam. This model also demonstrated competency in diverse professional fields, such as nursing, licensed counseling, pharmacy, and aviation. Turbo-GPT3.5 exhibited strong performance on customer service tasks, indicating potential use cases in enhancing chatbots for call centers and routine advice services. Both models also scored well on sensory and experience-based tests outside a machine's traditional roles, including wine sommelier, beer tasting, emotional quotient, and body language reading. The study found that OpenAI's model improvement from Babbage to Turbo led to a 60% better performance on the grading scale within a few years. This progress indicates that addressing the current model's limitations could yield an AI capable of passing even the most rigorous professional certifications.
ChatGPT is currently the most popular large language model (LLM), with over 100 million users, making a significant impact on people's lives. However, due to the presence of jailbreak vulnerabilities, ChatGPT might have negative effects on people's lives, potentially even facilitating criminal activities. Testing whether ChatGPT can cause jailbreak is crucial because it can enhance ChatGPT's security, reliability, and social responsibility. Inspired by previous research revealing the varied performance of LLMs in different language translations, we suspected that wrapping prompts in multiple languages might lead to ChatGPT jailbreak. To investigate this, we designed a study with a fuzzing testing approach to analyzing ChatGPT's cross-linguistic proficiency. Our study includes three strategies by automatically posing different formats of malicious questions to ChatGPT: (1) each malicious question involving only one language, (2) multilingual malicious questions, (3) specifying that ChatGPT responds in a language different from the prompts. In addition, we also combine our strategies by utilizing prompt injection templates to wrap the three aforementioned types of questions. We examined a total of 7,892 Q&A data points, discovering that multilingual wrapping can indeed lead to ChatGPT's jailbreak, with different wrapping methods having varying effects on jailbreak probability. Prompt injection can amplify the probability of jailbreak caused by multilingual wrapping. This work provides insights for OpenAI developers to enhance ChatGPT's support for language diversity and inclusion.
Recent large language models (LLM) exhibit sub-optimal performance on low-resource languages, as the training data of these models is usually dominated by English and other high-resource languages. Furthermore, it is challenging to train models for low-resource languages, especially from scratch, due to a lack of high quality training data. Adapting pretrained LLMs reduces the need for data in the new language while also providing cross lingual transfer capabilities. However, naively adapting to new languages leads to catastrophic forgetting and poor tokenizer efficiency. In this work, we study how to efficiently adapt any existing pretrained LLM to a new language without running into these issues. In particular, we improve the encoding efficiency of the tokenizer by adding new tokens from the target language and study the data mixing recipe to mitigate forgetting. Our experiments on adapting an English LLM to Hungarian and Thai show that our recipe can reach better performance than open source models on the target language, with minimal regressions on English.
Large language models have achieved great success in recent years, so as their variants in vision. Existing vision-language models can describe images in natural languages, answer visual-related questions, or perform complex reasoning about the image. However, it is yet unclear how localization tasks, such as word grounding or referring localization, can be performed using large language models. In this work, we aim to develop a vision-language model that can take locations, for example, a set of points or boxes, as either inputs or outputs. When taking locations as inputs, the model performs location-conditioned captioning, which generates captions for the indicated object or region. When generating locations as outputs, our model regresses pixel coordinates for each output word generated by the language model, and thus performs dense word grounding. Our model is pre-trained on the Localized Narrative dataset, which contains pixel-word-aligned captioning from human attention. We show our model can be applied to various location-aware vision-language tasks, including referring localization, location-conditioned captioning, and dense object captioning, archiving state-of-the-art performance on RefCOCO and Visual Genome. Project page: //jerryxu.net/PixelLLM .
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.
Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.