亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We focus on the task of language-conditioned grasping in clutter, in which a robot is supposed to grasp the target object based on a language instruction. Previous works separately conduct visual grounding to localize the target object, and generate a grasp for that object. However, these works require object labels or visual attributes for grounding, which calls for handcrafted rules in planner and restricts the range of language instructions. In this paper, we propose to jointly model vision, language and action with object-centric representation. Our method is applicable under more flexible language instructions, and not limited by visual grounding error. Besides, by utilizing the powerful priors from the pre-trained multi-modal model and grasp model, sample efficiency is effectively improved and the sim2real problem is relived without additional data for transfer. A series of experiments carried out in simulation and real world indicate that our method can achieve better task success rate by less times of motion under more flexible language instructions. Moreover, our method is capable of generalizing better to scenarios with unseen objects and language instructions. Our code is available at //github.com/xukechun/Vision-Language-Grasping

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · LORA · Performer · 數據集 ·
2024 年 12 月 13 日

Fine-tuning pre-trained large language models in a parameter-efficient manner is widely studied for its effectiveness and efficiency. LoRA is one of the most widely used methods, which assumes that the optimization process is essentially low dimensional. Although LoRA has demonstrated commendable performance, there remains a significant performance gap between LoRA and full fine-tuning when learning new tasks. In this work, we propose Low-Rank Adaptation with Task-Relevant Feature Enhancement(LoRATRF) for enhancing task-relevant features from the perspective of editing neural network representations. To prioritize task-relevant features, a task-aware filter that selectively extracts valuable knowledge from hidden representations for the target or current task is designed. As the experiments on a vareity of datasets including NLU, commonsense reasoning and mathematical reasoning tasks demonstrates, our method reduces 33.71% parameters and achieves better performance on a variety of datasets in comparison with SOTA low-rank methods.

With the rapid development of artificial intelligence, robotics, and Internet of Things, multi-robot systems are progressively acquiring human-like environmental perception and understanding capabilities, empowering them to complete complex tasks through autonomous decision-making and interaction. However, the Internet of Robotic Things (IoRT) faces significant challenges in terms of spectrum resources, sensing accuracy, communication latency, and energy supply. To address these issues, a reconfigurable intelligent surface (RIS)-aided IoRT network is proposed to enhance the overall performance of robotic communication, sensing, computation, and energy harvesting. In the case studies, by jointly optimizing parameters such as transceiver beamforming, robot trajectories, and RIS coefficients, solutions based on multi-agent deep reinforcement learning and multi-objective optimization are proposed to solve problems such as beamforming design, path planning, target sensing, and data aggregation. Numerical results are provided to demonstrate the effectiveness of proposed solutions in improve communication quality, sensing accuracy, computation error, and energy efficiency of RIS-aided IoRT networks.

Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Such work often presents high-performing detectors. However, humans and machines can produce text in different styles and domains, yet the performance impact of such on machine generated text detection systems remains unclear. In this paper, we audit the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts, leading to concerns about the reliability of detection systems. We recommend that future work attends to stylistic factors and reading difficulty levels of human-written and machine-generated text.

Learning from Demonstration (LfD) systems are commonly used to teach robots new tasks by generating a set of skills from user-provided demonstrations. These skills can then be sequenced by planning algorithms to execute complex tasks. However, LfD systems typically require a full demonstration of the entire task, even when parts of it are already known to the robot. This limitation comes from the system's inability to recognize which sub-tasks are already familiar, leading to a repetitive and burdensome demonstration process for users. In this paper, we introduce a new method for guided demonstrations that reduces this burden, by helping the robot to identify which parts of the task it already knows, considering the overall task goal and the robot's existing skills. In particular, through a combinatorial search, the method finds the smallest necessary change in the initial task conditions that allows the robot to solve the task with its current knowledge. This state is referred to as the excuse state. The human demonstrator is then only required to teach how to reach the excuse state (missing sub-task), rather than demonstrating the entire task. Empirical results and a pilot user study show that our method reduces demonstration time by 61% and decreases the size of demonstrations by 72%.

While formal models of concurrency tend to focus on synchronous communication, asynchronous communication is relevant in practice. In this paper, we will discuss asynchronous communication in the context of session-based concurrency, the model of computation in which session types specify the structure of the two-party protocols implemented by the channels of a communicating process. We overview recent work on addressing the challenge of ensuring the deadlock-freedom property for message-passing processes that communicate asynchronously in cyclic process networks governed by session types. We offer a gradual presentation of three typed process frameworks and outline how they may be used to guarantee deadlock freedom for a concurrent functional language with sessions.

Intent inferral, the process by which a robotic device predicts a user's intent from biosignals, offers an effective and intuitive way to control wearable robots. Classical intent inferral methods treat biosignal inputs as unidirectional ground truths for training machine learning models, where the internal state of the model is not directly observable by the user. In this work, we propose reciprocal learning, a bidirectional paradigm that facilitates human adaptation to an intent inferral classifier. Our paradigm consists of iterative, interwoven stages that alternate between updating machine learning models and guiding human adaptation with the use of augmented visual feedback. We demonstrate this paradigm in the context of controlling a robotic hand orthosis for stroke, where the device predicts open, close, and relax intents from electromyographic (EMG) signals and provides appropriate assistance. We use LED progress-bar displays to communicate to the user the predicted probabilities for open and close intents by the classifier. Our experiments with stroke subjects show reciprocal learning improving performance in a subset of subjects (two out of five) without negatively impacting performance on the others. We hypothesize that, during reciprocal learning, subjects can learn to reproduce more distinguishable muscle activation patterns and generate more separable biosignals.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司