Recent semi-supervised learning algorithms have demonstrated greater success with higher overall performance due to better-unlabeled data representations. Nonetheless, recent research suggests that the performance of the SSL algorithm can be degraded when the unlabeled set contains out-of-distribution examples (OODs). This work addresses the following question: How do out-of-distribution (OOD) data adversely affect semi-supervised learning algorithms? To answer this question, we investigate the critical causes of OOD's negative effect on SSL algorithms. In particular, we found that 1) certain kinds of OOD data instances that are close to the decision boundary have a more significant impact on performance than those that are further away, and 2) Batch Normalization (BN), a popular module, may degrade rather than improve performance when the unlabeled set contains OODs. In this context, we developed a unified weighted robust SSL framework that can be easily extended to many existing SSL algorithms and improve their robustness against OODs. More specifically, we developed an efficient bi-level optimization algorithm that could accommodate high-order approximations of the objective and scale to multiple inner optimization steps to learn a massive number of weight parameters while outperforming existing low-order approximations of bi-level optimization. Further, we conduct a theoretical study of the impact of faraway OODs in the BN step and propose a weighted batch normalization (WBN) procedure for improved performance. Finally, we discuss the connection between our approach and low-order approximation techniques. Our experiments on synthetic and real-world datasets demonstrate that our proposed approach significantly enhances the robustness of four representative SSL algorithms against OODs compared to four state-of-the-art robust SSL strategies.
Today, deep learning is increasingly applied in security-critical situations such as autonomous driving and medical diagnosis. Despite its success, the behavior and robustness of deep networks are not fully understood yet, posing a significant risk. In particular, researchers recently found that neural networks are overly confident in their predictions, even on data they have never seen before. To tackle this issue, one can differentiate two approaches in the literature. One accounts for uncertainty in the predictions, while the second estimates the underlying density of the training data to decide whether a given input is close to the training data, and thus the network is able to perform as expected.In this thesis, we investigate the capabilities of EBMs at the task of fitting the training data distribution to perform detection of out-of-distribution (OOD) inputs. We find that on most datasets, EBMs do not inherently outperform other density estimators at detecting OOD data despite their flexibility. Thus, we additionally investigate the effects of supervision, dimensionality reduction, and architectural modifications on the performance of EBMs. Further, we propose Energy-Prior Network (EPN) which enables estimation of various uncertainties within an EBM for classification, bridging the gap between two approaches for tackling the OOD detection problem. We identify a connection between the concentration parameters of the Dirichlet distribution and the joint energy in an EBM. Additionally, this allows optimization without a held-out OOD dataset, which might not be available or costly to collect in some applications. Finally, we empirically demonstrate that Energy-Prior Network (EPN) is able to detect OOD inputs, datasets shifts, and adversarial examples. Theoretically, EPN offers favorable properties for the asymptotic case when inputs are far from the training data.
Anomaly detection (AD) is a crucial machine learning task that aims to learn patterns from a set of normal training samples to identify abnormal samples in test data. Most existing AD studies assume that the training and test data are drawn from the same data distribution, but the test data can have large distribution shifts arising in many real-world applications due to different natural variations such as new lighting conditions, object poses, or background appearances, rendering existing AD methods ineffective in such cases. In this paper, we consider the problem of anomaly detection under distribution shift and establish performance benchmarks on three widely-used AD and out-of-distribution (OOD) generalization datasets. We demonstrate that simple adaptation of state-of-the-art OOD generalization methods to AD settings fails to work effectively due to the lack of labeled anomaly data. We further introduce a novel robust AD approach to diverse distribution shifts by minimizing the distribution gap between in-distribution and OOD normal samples in both the training and inference stages in an unsupervised way. Our extensive empirical results on the three datasets show that our approach substantially outperforms state-of-the-art AD methods and OOD generalization methods on data with various distribution shifts, while maintaining the detection accuracy on in-distribution data.
Out-of-distribution detection is a common issue in deploying vision models in practice and solving it is an essential building block in safety critical applications. Existing OOD detection solutions focus on improving the OOD robustness of a classification model trained exclusively on in-distribution (ID) data. In this work, we take a different approach and propose to leverage generic pre-trained representations. We first investigate the behaviour of simple classifiers built on top of such representations and show striking performance gains compared to the ID trained representations. We propose a novel OOD method, called GROOD, that achieves excellent performance, predicated by the use of a good generic representation. Only a trivial training process is required for adapting GROOD to a particular problem. The method is simple, general, efficient, calibrated and with only a few hyper-parameters. The method achieves state-of-the-art performance on a number of OOD benchmarks, reaching near perfect performance on several of them. The source code is available at //github.com/vojirt/GROOD.
Adaptive design optimization (ADO) is a state-of-the-art technique for experimental design (Cavagnaro, Myung, Pitt, & Kujala, 2010). ADO dynamically identifies stimuli that, in expectation, yield the most information about a hypothetical construct of interest (e.g., parameters of a cognitive model). To calculate this expectation, ADO leverages the modeler's existing knowledge, specified in the form of a prior distribution. Informative priors align with the distribution of the focal construct in the participant population. This alignment is assumed by ADO's internal assessment of expected information gain. If the prior is instead misinformative, i.e., does not align with the participant population, ADO's estimates of expected information gain could be inaccurate. In many cases, the true distribution that characterizes the participant population is unknown, and experimenters rely on heuristics in their choice of prior and without an understanding of how this choice affects ADO's behavior. Our work introduces a mathematical framework that facilitates investigation of the consequences of the choice of prior distribution on the efficiency of experiments designed using ADO. Through theoretical and empirical results, we show that, in the context of prior misinformation, measures of expected information gain are distinct from the correctness of the corresponding inference. Through a series of simulation experiments, we show that, in the case of parameter estimation, ADO nevertheless outperforms other design methods. Conversely, in the case of model selection, misinformative priors can lead inference to favor the wrong model, and rather than mitigating this pitfall, ADO exacerbates it.
We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.