Hallucination is a common problem for Large Vision-Language Models (LVLMs) with long generations which is difficult to eradicate. The generation with hallucinations is partially inconsistent with the image content. To mitigate hallucination, current studies either focus on the process of model inference or the results of model generation, but the solutions they design sometimes do not deal appropriately with various types of queries and the hallucinations of the generations about these queries. To accurately deal with various hallucinations, we present a unified framework, Dentist, for hallucination mitigation. The core step is to first classify the queries, then perform different processes of hallucination mitigation based on the classification result, just like a dentist first observes the teeth and then makes a plan. In a simple deployment, Dentist can classify queries as perception or reasoning and easily mitigate potential hallucinations in answers which has been demonstrated in our experiments. On MMbench, we achieve a 13.44%/10.2%/15.8% improvement in accuracy on Image Quality, a Coarse Perception visual question answering (VQA) task, over the baseline InstructBLIP/LLaVA/VisualGLM.
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding and generation, and they are increasingly being utilized across various domains to enhance productivity. However, due to the high costs of training and maintaining these models, coupled with the fact that some LLMs are proprietary, individuals often rely on online AI as a Service (AIaaS) provided by LLM companies. This business model poses significant privacy risks, as service providers may exploit users' trace patterns and behavioral data. In this paper, we propose a practical and privacy-preserving framework that ensures user anonymity by preventing service providers from linking requests to the individuals who submit them. Our framework is built on partially blind signatures, which guarantee the unlinkability of user requests. Furthermore, we introduce two strategies tailored to both subscription-based and API-based service models, ensuring the protection of both users' privacy and service providers' interests. The framework is designed to integrate seamlessly with existing LLM systems, as it does not require modifications to the underlying architectures. Experimental results demonstrate that our framework incurs minimal computation and communication overhead, making it a feasible solution for real-world applications.
Large Language Models (LLMs) have demonstrated remarkable generation capabilities but often struggle to access up-to-date information, which can lead to hallucinations. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating knowledge from external databases, enabling more accurate and relevant responses. Due to the context window constraints of LLMs, it is impractical to input the entire external database context directly into the model. Instead, only the most relevant information, referred to as chunks, is selectively retrieved. However, current RAG research faces three key challenges. First, existing solutions often select each chunk independently, overlooking potential correlations among them. Second, in practice the utility of chunks is non-monotonic, meaning that adding more chunks can decrease overall utility. Traditional methods emphasize maximizing the number of included chunks, which can inadvertently compromise performance. Third, each type of user query possesses unique characteristics that require tailored handling, an aspect that current approaches do not fully consider. To overcome these challenges, we propose a cost constrained retrieval optimization system CORAG for retrieval-augmented generation. We employ a Monte Carlo Tree Search (MCTS) based policy framework to find optimal chunk combinations sequentially, allowing for a comprehensive consideration of correlations among chunks. Additionally, rather than viewing budget exhaustion as a termination condition, we integrate budget constraints into the optimization of chunk combinations, effectively addressing the non-monotonicity of chunk utility.
Large Language Models (LLMs) are capable of generating persuasive Natural Language Explanations (NLEs) to justify their answers. However, the faithfulness of these explanations should not be readily trusted at face value. Recent studies have proposed various methods to measure the faithfulness of NLEs, typically by inserting perturbations at the explanation or feature level. We argue that these approaches are neither comprehensive nor correctly designed according to the established definition of faithfulness. Moreover, we highlight the risks of grounding faithfulness findings on out-of-distribution samples. In this work, we leverage a causal mediation technique called activation patching, to measure the faithfulness of an explanation towards supporting the explained answer. Our proposed metric, Causal Faithfulness quantifies the consistency of causal attributions between explanations and the corresponding model outputs as the indicator of faithfulness. We experimented across models varying from 2B to 27B parameters and found that models that underwent alignment tuning tend to produce more faithful and plausible explanations. We find that Causal Faithfulness is a promising improvement over existing faithfulness tests by taking into account the model's internal computations and avoiding out of distribution concerns that could otherwise undermine the validity of faithfulness assessments. We release the code in \url{//github.com/wj210/Causal-Faithfulness}
We demonstrate the inter-translatability of proofs between the most prominent sequent-based formalisms for G\"odel-L\"ob provability logic. In particular, we consider Sambin and Valentini's sequent system GLseq, Shamkanov's non-wellfounded and cyclic sequent systems GL$\infty$ and GLcirc, Poggiolesi's tree-hypersequent system CSGL, and Negri's labeled sequent system G3GL. Shamkanov showed how to transform proofs between GLseq, GL$\infty$, and GLcirc, and Gor\'e and Ramanayake showed how to transform proofs between CSGL and G3GL, however, the exact nature of proof transformations between the former three systems and the latter two systems has remained an open problem. We solve this open problem by showing how to restructure tree-hypersequent proofs into an end-active form and introduce a novel linearization technique that transforms such proofs into linear nested sequent proofs. As a result, we obtain a new proof-theoretic tool for extracting linear nested sequent systems from tree-hypersequent systems, which yields the first cut-free linear nested sequent calculus LNGL for G\"odel-L\"ob provability logic. We show how to transform proofs in LNGL into a certain normal form, where proofs repeat in stages of modal and local rule applications, and which are translatable into GLseq and G3GL proofs. These new syntactic transformations, together with those mentioned above, establish full proof-theoretic correspondences between GLseq, GL$\infty$, GLcirc, CSGL, G3GL, and LNGL while also giving (to the best of the author's knowledge) the first constructive proof mappings between structural (viz. labeled, tree-hypersequent, and linear nested sequent) systems and a cyclic sequent system.
Multimodal Large Language Models (MLLMs) inherit the superior text understanding capabilities of LLMs and extend these capabilities to multimodal scenarios. These models achieve excellent results in the general domain of multimodal tasks. However, in the medical domain, the substantial training costs and the requirement for extensive medical data pose challenges to the development of medical MLLMs. Furthermore, due to the free-text form of answers, tasks such as visual grounding that need to produce output in a prescribed form become difficult for MLLMs. So far, there have been no medical MLLMs works in medical visual grounding area. For the medical vision grounding task, which involves identifying locations in medical images based on short text descriptions, we propose Parameter-efficient Fine-tuning medical multimodal large language models for Medcial Visual Grounding (PFMVG). To validate the performance of the model, we evaluate it on a public benchmark dataset for medical visual grounding, where it achieves competitive results, and significantly outperforming GPT-4v. Our code will be open sourced after peer review.
Instruction following is one of the fundamental capabilities of large language models (LLMs). As the ability of LLMs is constantly improving, they have been increasingly applied to deal with complex human instructions in real-world scenarios. Therefore, how to evaluate the ability of complex instruction-following of LLMs has become a critical research problem. Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints, which is an indispensable constituent in complex instructions. To this end, we propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints. We propose a hierarchical taxonomy for complex instructions, including 4 constraint types, 19 constraint dimensions, and 4 composition types, and manually collect a high-quality dataset accordingly. To make the evaluation reliable, we augment LLM-based evaluators with rules to effectively verify whether generated texts can satisfy each constraint and composition. Furthermore, we obtain the final evaluation score based on the dependency structure determined by different composition types. ComplexBench identifies significant deficiencies in existing LLMs when dealing with complex instructions with multiple constraints composition.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.